Inline Assembly

kaneton people

January 14, 2012

kaneton people Assembly

Outline

Overview

Syntax

Basic Use

Extended Use
Template
Operands
Clobber List

Volatile

Constraints

Bibliography

kaneton people Inline Assembly

Overview

Outline

Overview

kaneton people Inline Assembly

Description

Inline assembly is used to insert assembly code into C source code.

Inline assembly reduces the function-call overhead while reducing the number of little
assembly source files.

Moreover, the inline assembly source code can evolve into the C source one, using C
variables, C constants etc.

Inline assembly is commonly used to improve performances. Neverthless system
programmers appreciate the inline assembly because some processor instructions are
only available in assembly.

gcc uses the keyword asm to introduce inline assembly.

kaneton people Assembly

Syntax

Outline

Syntax

kaneton people

Syntax

Overview

gce inline assembly uses AT&T assembly syntax which is different from the Intel one.

We will study the major differences between the AT&T syntax and the Intel one.

kaneton people Inline Assembly

Syntax

Source-Destination Ordering

> Intel: opcode dst src
> AT&T: opcode src dst

kaneton people Inline Assembly

Syntax

Register Naming

Register names are prefixed by % for example %eax.

With C input arguments, the registers are prefixed by %% like % %eax.

kaneton people Inline Assembly

Syntax

Immediate Operand

Immediate operands are prefixed by $.

In Intel syntax, hexadecimal numbers are suffixed by h. Instead the AT&T syntax uses
0x as prefix.

kaneton people Inline Assembly

Syntax

Operand Size

Intel syntax uses keywords byte, word and dword to specify the operand size while
AT&T syntax uses a suffix to the opcode: b, w, .

> Intel: mov al, byte ptr foo
> AT&T: movb foo, %al

kaneton people Inline Assembly

Syntax

Memory Operands

The Intel syntax uses [and] to specify the base register while AT&T uses (and).

Moreover, the syntaxes for the shifts are also different:

> Intel: [basepointer + indexpointer * indexscale + immed32]

> AT&T: immed32(basepointer,indexpointer,indexscale)

You could think of the formula to calculate the address as:

immed32 + basepointer + indexpointer * indexscale

kaneton people Inline Assembly

Syntax

Example

The equivalent C source code:

*(p + 1)

where p is a char*.

The AT&T assembly code:

1(%eax)

where %eax has the value of p.

The Intel assembly code:

[eax + 1]

kaneton people Inline Assembly

Syntax

Major Differencies

Intel Code AT&T Code
mov eax, 1 movl $1, %eax
mov ebx, Offh movl $0xff, %ebx
int 80h int $0x80

mov ebx, eax

movl %eax, %ebx

mov eax, [ecx]

movl (%ecx), Y%eax

mov eax, [ebx + 3]

movl 3(%ebx), %eax

mov eax, [ebx -+ 20h]

movl 0x20(%ebx), Yoeax

add eax, [ebx + ecx * 2h]

addl (%ebx, %ecx, 0x2), %eax

lea eax, [ebx + ecx]

leal (%ebx, %ecx), Y%eax

sub eax, [ebx + ecx * 4h - 20h]

subl -0x20(%ebx, %ecx, 0x4), Y%eax

kaneton people Inline Assembly

Basic Use

Outline

Basic Use

kaneton people Inline Assembly

Basic Use

Overview

The format of the gcc inline assembly is the following:

asm(‘‘assembly code’’);

Example:

asm(‘‘movl %eax, %ecx’’);

You can also use the keyword _asm__ in the case of a name conflict with your
previous source code.

kaneton people Assembly

Basic Use

Registers

You can use multi-lines source code thinking to insert the sequence \n\t at the end of
each line.
Example:

asm(‘ ‘movl %cr0, %eax\n\t’’

“‘orl %eax, $1\n\t’’
“‘movl %eax, %cr0’’);

You can notice in this example that we overwrite the register

* gec does not know anything about the inline assembly. Overwritting the eax register
could result with an error because gcc maybe used this register to hold a variable or
anything else.

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Outline

Extended Use
Template
Operands
Clobber List

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

In the basic use, we had only instructions. In the extended one we can specify more
options like the input C operands, the output C operands and the clobbered registers
i.e the modified registers.

The syntax of the inline assembly becomes:

asm(assembler template

: output operands /* optional */
: input operands /* optional */
: list of clobbered registers /* optional */

);

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Be careful with this syntax:

> the outputs are located before the inputs

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Be careful with this syntax:

> the outputs are located before the inputs

> think to use colons to separate sections: inputs, outputs etc.

kaneton people Assembly

Template
Extended Use Operands

pe
Clobber List

Be careful with this syntax:
> the outputs are located before the inputs
> think to use colons to separate sections: inputs, outputs etc.

> do not specify an empty clobbered registers. In fact the last list provided must
always contain at least one element

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Example

Let's study some examples:

The following one is incorrect:

asm(¢¢...7?

)3

Neverthless, this one is correct:

asm(¢¢...??

)

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Problem

Come back to our example which is a famous one in the low-level system
programming field:
asm(‘‘movl Y%cr0O, %eax\n\t’’

“‘orl jeax, $1\n\t’’
‘‘movl %eax, %cr0’’);

You can notice that the eax register is overwritten, so we have to tell gcc to restore
the contents of the eax register, here come the clobbered register list.

kaneton people Assembly

Template
Extended Use Operands

Solution

The clobber list contains the name of the registers modified by the inline assembly
source code.
Let's see how to use it to resolve our problem:

asm(‘‘movl %cr0, %eax\n\t’’

“‘orl %eax, $1\n\t’’
“‘movl %eax, %cr0’’

¢ “heax’?

)3

kaneton people

Template
Extended Use Operands
Clobber List

Example

Now, another example.

We have two C variables A and B and we want to move the contents of A into B but
using inline assembly for an unknown reason:

asm(‘‘movl %1, %%eax\n\t’’
“‘movl Y%leax, %0’°
“¢=r>> (b)
((r)Y (a)
¢ “heax’’

);

kaneton people Assembly

Template
Extended Use Operands
Clobber List

Explanations

1. the operands %0-9 specify the input and outputs. Note that the first value is used
for the first output. If no output is present, then %0 will specify the first input.

Now we will look at each field in details.

Note that we do not have to tell gcc the memory was modified because we used the

constraints “r” so the registers were used.

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Explanations

1. the operands %0-9 specify the input and outputs. Note that the first value is used
for the first output. If no output is present, then %0 will specify the first input.

2. the constraint “r” is used to precise the nature of the operand. Be careful with it.
In this case, it tells gcc to use the operand as a register. The constraint “=""is
used for the output operands specifying a write-only operand.

Now we will look at each field in details.

Note that we do not have to tell gcc the memory was modified because we used the

constraints “r” so the registers were used.

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Explanations

1. the operands %0-9 specify the input and outputs. Note that the first value is used
for the first output. If no output is present, then %0 will specify the first input.

2. the constraint “r” is used to precise the nature of the operand. Be careful with it.
In this case, it tells gcc to use the operand as a register. The constraint “=""is
used for the output operands specifying a write-only operand.

3. the double prefix %% is used when using input and/or output operands to avoid
conflicts with registers.

Now we will look at each field in details.

Note that we do not have to tell gcc the memory was modified because we used the

constraints “r” so the registers were used.

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Explanations

1. the operands %0-9 specify the input and outputs. Note that the first value is used
for the first output. If no output is present, then %0 will specify the first input.

2. the constraint “r” is used to precise the nature of the operand. Be careful with it.
In this case, it tells gcc to use the operand as a register. The constraint “=""is
used for the output operands specifying a write-only operand.

3. the double prefix %% is used when using input and/or output operands to avoid
conflicts with registers.

4. finally, the clobbered register eax is indicated to tell gcc to restore this register's
contents.

Now we will look at each field in details.

Note that we do not have to tell gcc the memory was modified because we used the

constraints “r” so the registers were used.

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Outline

Extended Use
Template

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Overview

There are only two rules for the template:

1. finish each line with the sequence \n\t

kaneton people Assembly

Template
Extended Use Operands
Clobber List

Outline

Extended Use

Operands

kaneton people

Template
Extended Use Operands
Clobber List

Overview

The syntax used for the operands is:

‘‘constraint’’ (operand)

The constraints are primarily used to decide the addressing mode for operands:
register, memory, etc.

The operands are separated by commas inside a list.
Operands are numbered from 0 to n-1.
Output operands must be Ivalues but this is obvious. Input operands are not restricted.

gee will assume that the values in the output operands are dead and can be
overwritten.

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Read-Write Outputs

gcc inline assembly also allows read-write outputs operands.

asm(‘‘orl %0, %0°°
: = (%)
: 0 (%)
)3

In this example, we specify gcc to use the C variable x as the output operand.

For the input operand, we use the constraint “0” to tell gcc to use the same register
for the input operand as the operand numbered 0 do.

So in this case, the input and output operand will be stored in the same register which
is not precised, so gcc will decide.

So, in this example we have a read-write operand x.

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Specify the Registers

Note that we can also explicitly tell gcc which register to use for storing an operand:
asm(‘‘orl %0, %0’
: Cf=c? (%)

: e (%)

)5

In this case, we tell gcc to use the ecx register.

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Notices

You can notice that in the two previous examples, we put nothing into the clobbered
list.

In the first example, we told gcc to decide the register to use so gcc knows which
register to restore.

In the second one, we specify gcc to use the ecx register. Once again, gcc perfectly
knows which register to restore.

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Outline

Extended Use

Clobber List

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Overview

Some instructions clobber the hardware registers.

For this reason, the inline assembly user has to indicate gcc the names of the registers
to restore.

Note that gcc already knows the clobbered registers used via the constraints of the
input and output operands.

Be careful with instructions which implicitly use some registers.

kaneton people Inline Assembly

Template
Extended Use Operands
Clobber List

Example

Let's see an example:

asm(‘ ‘movl %0, %kebx\n\t’’
“‘movl %1, %hecx\n\t’’
‘‘call foo’’

‘‘g’? (from), “‘g’’ (to)

¢ “%hebx’’, ‘‘Yecx’’

)

kaneton people

Template
Extended Use Operands
Clobber List

Condition Code and Memory

The user can also specify two other elements in the clobber list:

1. “cc” meaning that the condition code was modified i.e for example the bits of the
eflags register was modified: jnz, je etc.

2. “memory” when a variable is set as output operand. This is very useful because
gcc maybe holds this variable in a register. This constraint tells gcc to update its
registers if needed. This constraint is equivalent to set all the registers in the
clobber list.

kaneton people Inline Assembly

Volatile

Outline

Volatile

kaneton people Inline Assembly

Volatile

Overview

First, the keyword volatile is used between the asm one and the first parenthesis.
You can also use the keyword __volatile_ to avoid conflicts.
The keyword volatile is useful in one precise case:

When the user wants to tell gcc to avoid optimizations. For example if your assembly
code is located inside a loop, gcc will certainly move your assembly code out of the
loop. Using volatile avoid this optimization.

Be careful, if your assembly code does not have any side effect, it is better not to put
the volatile keyword to allow gcc optimizations.

kaneton people Inline Assembly

Constraints

Outline

Constraints

kaneton people

Constraints

Overview

You probably noticed within this course that the constraints have got a lot to do with
inline assembly.

Indeed, with them it is possible to specify the location of operands: memory, registers
etc.

We will now list the different types of operands.

kaneton people Inline Assembly

Constraints

ur"

Register Operand Constraint:

When an operand is specified with a register operand constraint, gcc stores the
operand in a GPR (General Purpose Register).

The user can also explicitly tell gcc the register to use. For this, he has to use specific
constraints listed below:

Constraint Register(s)

any General Purpose Register
%eax, %ax, %al

Y%ebx, %bx, %bl

Y%ecx, Y%cx, Yocl

%edx, %dx, %dI

%esi, %si

Y%edi, %di

olwlalo|o|w|=

kaneton people Inline Assembly

Constraints

Memory Operand Constraint: “m”

When the operands are in the memory, any operation performed on them will occur
directly in the memory location, as opposed to register constraints.

Register constraints are usually used with instructions which only accept registers as
operands. Another case is to speed up the process, for example if a variable is needed
for three consecutive instructions.

The memory constraint can be used most effeciently in cases where a C variable needs
to be updated inside inline assembly.
For example:

asm(‘‘sidt %0\n’’

: 22=m’’ (idtr)
)3

kaneton people Inline Assembly

Constraints

Matching Digit Constraint

As seen before, in some cases the programmer wants to use an operand both in input
and in output.

asm(‘‘incl %0°°
: 2’=a’’ (var)
: 2207 (var)

)3

In this example the register eax is used as output operand. Then the input operand var
uses the constraint “0” specifying gcc to use the same constraint than the Oth operand.

After all, this inline assembly source code will use the eax register both as input and
as output.

kaneton people Inline Assembly

Constraints

Other Constraints

> “i”. an immediate integer operand (one with constant value) is allowed.

this includes symbolic constants whose values will be known only at assembly
time.

kaneton people Inline Assembly

Constraints

Other Constraints

> “i”. an immediate integer operand (one with constant value) is allowed.

this includes symbolic constants whose values will be known only at assembly
time.

> “n”: an immediate integer operand with a known numeric value is allowed.

kaneton people Inline Assembly

Constraints

Other Constraints

> “i”. an immediate integer operand (one with constant value) is allowed.

this includes symbolic constants whose values will be known only at assembly
time.

> “n”: an immediate integer operand with a known numeric value is allowed.

> “g" any register, memory or immediate integer operand is allowed, except for
registers that are not general purpose registers.

kaneton people Inline Assembly

Constraints

x86 Specific Constraints

> “q" registers a, b, c or d

kaneton people Inline Assembly

Constraints

x86 Specific Constraints

> “q" registers a, b, cor d
> “I": constant in range 0 to 31 (for 32-bit shifts)

kaneton people Inline Assembly

Constraints

x86 Specific Constraints

> “q" registers a, b, cor d
> “I": constant in range 0 to 31 (for 32-bit shifts)
> “J": constant in range 0 to 63 (for 64-bit shifts)

kaneton people Inline Assembly

Constraints

x86 Specific Constraints

> “q" registers a, b, cor d

> “I": constant in range 0 to 31 (for 32-bit shifts)
> “J": constant in range 0 to 63 (for 64-bit shifts)
> “K": Oxff

kaneton people Inline Assembly

Constraints

x86 Specific Constraints

> “q" registers a, b, cor d

> “I": constant in range 0 to 31 (for 32-bit shifts)
> “J": constant in range 0 to 63 (for 64-bit shifts)
> “K": Oxff

> “L": OxfFff

kaneton people Inline Assembly

Constraints

x86 Specific Constraints

> “q" registers a, b, cor d

> “I": constant in range 0 to 31 (for 32-bit shifts)
> “J": constant in range 0 to 63 (for 64-bit shifts)
“K": Oxff

“L": OxfFff

> “M™ 0, 1, 2, 4 (shifts for lea instruction)

kaneton people Inline Assembly

Constraints

x86 Specific Constraints

> “q" registers a, b, cor d

> “I": constant in range 0 to 31 (for 32-bit shifts)
> “J": constant in range 0 to 63 (for 64-bit shifts)
“K": Oxff

“L": OxfFff

> “M™ 0, 1, 2, 4 (shifts for lea instruction)

> “N": constant in range 0 to 255 (for out instruction)

kaneton people Inline Assembly

Constraints

Modifiers

There are also constraint modifiers for more precision over the effects of constraints.

The common constraints modifiers are:

> “=". means that this operand is write-only, the previous value is discarded and
replaced by output data.

kaneton people Inline Assembly

Constraints

Modifiers

There are also constraint modifiers for more precision over the effects of constraints.

The common constraints modifiers are:

> “=". means that this operand is write-only, the previous value is discarded and
replaced by output data.

> “&" means that this operand is an earlyclobber operand, which is modified before
the instruction is finished using the input operands. Therefore, this operand may
not lie in a register that is used as an input operand or as part of any memory
address. An input operand can be tied to an earlyclobber operand if its only use
as an input occurs before the early result is written.

kaneton people Inline Assembly

Bibliography

Outline

Bibliography

kaneton people

Bibliography

@ GCC Inline Assembly Howto

@ IA-32 Intel Architecture
Software Developer's Manual
Volume 2A: Instruction Set Reference, A-M

[8 1A-32 Intel Architecture
Software Developer’'s Manual
Volume 2B: Instruction Set Reference, N-Z

kaneton people Inline Assembly

	Overview
	Syntax
	Basic Use
	Extended Use
	Template
	Operands
	Clobber List

	Volatile
	Constraints
	Bibliography

