
Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Program linking and object files

kaneton people

January 14, 2012

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Outline

Introduction

Computer architecture

From source-code to runtime execution

Object file

Memory block

Case studies

Exercises

Conclusion

Bibliography

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Outline

Introduction

Computer architecture

From source-code to runtime execution

Object file

Memory block

Case studies

Exercises

Conclusion

Bibliography

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Overview

This course targets executable formats in an operating system.

This course will answer questions such as: how source-code is turned into object-code
and what are the steps from source-code compiling to runtime execution.

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Assumptions

A good knowledge of ABI (Application Binary Interface) should be helpful. This
course will deal with stack, arguments passing, local and gloable variables, etc.

Having, at least once in a lifetime, taken a look at a .o file should make things much
clearer.

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Outline

Introduction

Computer architecture

From source-code to runtime execution

Object file

Memory block

Case studies

Exercises

Conclusion

Bibliography

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Von Neumann’s architecture :: Basics

Todays code and data programs structures are a direct application of the Von
Neumann’s architecture.

This architecture falls into four main parts:

I The ALU (Arithmetic Logic Unit) : Achieve basic operations such as addition and
incrementation.

I The Control Unit : In charge of scheduling instructions.

I The memory : Contains both program and data.

I Inputs and outputs.

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Von Neumann’s architecture :: Advanced concepts

A program is read from a mass memory (i.e. non volatile storage such as tape and
hard-drive), and is loaded into the execution memory. This is the main difference with
the former Harvard architecture where code and data are physically splitted.

Initially, regarding code as data allowed code modification at runtime. For instance, a
loop instruction was buit from an opcode plus the index. Later, with the rise of
registers inside processors, this feature became deprecated.

Nevertheless, this architecture endures for a quite obvious reason: it permits the use of
compilers.

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Outline

Introduction

Computer architecture

From source-code to runtime execution

Object file

Memory block

Case studies

Exercises

Conclusion

Bibliography

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

The linking phase :: The linker

Linking is the process of combining various pieces of code and data together to form a
single executable that can be loaded in memory.

The basic concepts of linking remain the same, regardless of the operating system,
processor architecture or object file format being used.

The linker is a program that takes one or more objects generated by a compiler and
combines them into a single executable program.

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

The linking phase :: Symbol resolution

Assemblers and compilers produce relocatable object files. Relocatable means
functions and variables are not binded to any address. In a relocatable object file,
address are symbols (i.e. strings like assembly line: call foo).

Linkers combine these object files together to generate executable object files, by
turning these symbols into address. In other words, the linker assigns runtime
addresses to each section and each symbol. At this point, the code (functions) and
data (static and global variables) will have unique runtime addresses.

During the link-editing of an object, any relocation information supplied with the input
relocatable objects is applied to the output file.However, when creating a dynamic
executable or shared object, many of the relocations cannot be completed at link-edit
time. These relocations require logical addresses that are known only when the objects
are loaded into memory. In these cases, the link-editor generates new relocation
records as part of the output file image. The loader (runtime linker) must then process
these new relocation records.

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

The loading phase

Program loading refers to copying a program image from hard disk to the main
memory in order to put the program in a ready-to-run state.

The linker creates a program image, the loader is in charge to load this image in the
system memory (virtual memory the system is running in protected mode), and to
manage all other images present.

In some cases, program loading also might involve allocating storage space or mapping
virtual addresses to disk pages.

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Build cycle

Source code
Relocatable object

file
Executable object file

Data

Code

Data

C
o

m
p

ile
r

/
a

s
s
e

m
b

le
r

L
in

k
e

r

L
o

a
d

e
r

Process address

space

0x00000000

0xFFFFFFFF

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Outline

Introduction

Computer architecture

From source-code to runtime execution

Object file

Memory block

Case studies

Exercises

Conclusion

Bibliography

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Object file :: Executable format

An object file format is a computer file format used for the storage of object code and
related data typically produced by a compiler or assembler.

There are many different object file formats; originally each type of computer had its
own unique format, but with the advent of Unix and other portable operating systems,
some formats, such as COFF and ELF, have been defined and used on different kinds
of systems.

I ELF (modern UNIX, Linux, Solaris, etc.)

I COFF (System V)

I PE (stands for Portable Executable, Windows NT)

I DWARF

I a.out

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Object file :: File structure

Most object file formats are structured as blocks of data, each block containing a
certain type of data. These blocks can be paged in as needed by the virtual memory
system, needing no further processing to be ready to use.

The linker, with the help of a linker script, builds executable object files.

The simplest object file format is the DOS .COM format, which is simply a file of raw
bytes that is always loaded at a fixed location. Other formats are more elaborate: they
may contains relocation and debugging information (COFF, ELF, etc.).

Types of data supported by typical object file formats:

I BSS (Block Started by Symbol)

I Text segement

I Data segment

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Outline

Introduction

Computer architecture

From source-code to runtime execution

Object file

Memory block

Case studies

Exercises

Conclusion

Bibliography

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Memory block :: The text segment

A.k.a text segment, text, code, text section (mis-use), code section (mis-use), etc.

Refers to a portion of an object file that contains executable instructions (i.e. the
machine-code). This is why object files are usually called binaries.

Text segment is the only essential element in an object file.

It has a fixed size and is usually read-only. If the text section is not read-only, then the
particular architecture allows self-modifying code.

As a memory region, a code segment resides in the lower parts of memory or at its
very bottom, in order to prevent heap and stack overflows from overwriting it.

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Memory block :: The data segment

The data segment in an object file contains the global variables that have been
initialized by the programmer. It has a fixed size, since all of the data in this section is
set by the programmer before the program is loaded.

However, it is not read-only, since the values of the variables can be altered at
runtime. This is in contrast to the Rodata (constant, read-only data) section, as well
as the code segment (also known as text segment).

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Memory block :: The bss

It is often referred to as the ”bss section” or ”bss segment”. “bss” stands for Block
Started by Symbol.

The “bss” contains uninitialized static variables. The program loader initializes the
memory allocated for the bss section when it loads the program (usually, the bss
segment is zero-filled).

For embedded kernel developpment, the “bss” is usually used to reserve memory space
for the heap and the stack.

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Outline

Introduction

Computer architecture

From source-code to runtime execution

Object file

Memory block

Case studies

Exercises

Conclusion

Bibliography

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Case studies :: The ELF object file format

The segments contain information that is necessary for runtime execution of the file,
while sections contain important data for linking and relocation. Sections are defined
in the linker script, while segments are the products of object-code and a linker script.

Unlike many proprietary executable file formats, ELF is very flexible and extensible,and
it is not bound to any particular processor or architecture. This has allowed it to be
adopted by many different operating systems on many different platforms.

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Case studies :: The ELF object file format

ELF header

Program header table

.text

.rodata

.data

.bss

...

Section header table

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Case studies :: Writing a linker script for the WindRiver linker

$cat basic.c

#pragma use_section .stack

int stack[256];

#pragma use_section .code

int main()

{

return 0;

}

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Case studies :: Writing a linker script for the WindRiver linker

MEMORY

{

flash: org = 0xF0003000, len = 0x20000

sram: org = 0x00023000, len = 0x10000

}

SECTIONS

{

GROUP : {

.code : {

*(.text)

}

} > flash

GROUP : {

.var : {

*(.data)

}

.stack : {

*(.bss)

}

} > sram

}

$ dld -o basic.bin -l basic.o basic.dld
kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Case studies :: Writing a linker script for the WindRiver linker

The linker command outputs a link map, referencing for each functions and variables
its address.

$ dld -o basic.bin -l basic.o basic.dld > basic.map

A map file looks like:

g_task_pending 0x00023000 0x00000010

g_an_int 0x00023010 0x00000004

SC_krnTaskStart 0xf0003000 0x00000400

SC_krnTaskStop 0xf0003400 0x00000200

SC_krnTaskDelete 0xf0003600 0x00000800

...

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Outline

Introduction

Computer architecture

From source-code to runtime execution

Object file

Memory block

Case studies

Exercises

Conclusion

Bibliography

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Exercise :: 1

The following source code is linked as a UNIX standard object file.

#include <stdio.h>

int foo;

int bar = 90;

int main()

{

int local1;

int local2 = 67;

foo = 4;

printf("%d %d %d", local2, foo, bar);

return 0;

}

1. What is the UNIX standard object file format?

2. How many sections will be used?

3. How many segments will be produced?

4. Where these functions and variables will be located in the object file?

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Exercise :: 2

Loading this code as an ELF object file, what will be the output?

#include <stdio.h>

int bar = 90;

int main()

{

printf("%d\n", bar);

return 0;

}

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Exercise :: 3

Loading this code as a raw binary object file, what will be the output?

#include <stdio.h>

int bar = 90;

int main()

{

printf("%d\n", bar);

return 0;

}

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Outline

Introduction

Computer architecture

From source-code to runtime execution

Object file

Memory block

Case studies

Exercises

Conclusion

Bibliography

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Conclusion

In this course, basic concepts of linking phase has been shown. Besides linking tool,
modern operating systems using virtual memory and paging may need extra tools like
loaders, although they are not mandatory.

Much more theory on linkers and loaders is available. Take a look at whitepapers on
the subjects. Advanced linking concepts :

I Relocation algorithms

I Relaxation

I Library

I Dynamic linking

I etc.

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

Outline

Introduction

Computer architecture

From source-code to runtime execution

Object file

Memory block

Case studies

Exercises

Conclusion

Bibliography

kaneton people Program linking and object files

Introduction
Computer architecture

From source-code to runtime execution
Object file

Memory block
Case studies

Exercises
Conclusion

Bibliography

HP-UX Linker and Libraries User’s Guide, HP 9000 Computers, HP

Linkers and Libraries Guide, Sun Microsystems

kaneton people Program linking and object files

	Introduction
	Computer architecture
	From source-code to runtime execution
	Object file
	Memory block
	Case studies
	Exercises
	Conclusion
	Bibliography

