
The kaneton microkernel :: development

kaneton people

February 17, 2011

The kaneton microkernel :: development

This document describes how people can contribute to the kaneton microkernel project and
the rules they have to follow.

This document must be read by everyone contributing to the kaneton microkernel research
project implementation.

All the kaneton documents are available on the official website1.

1http://kaneton.opaak.org

2

Contents

1 Introduction 5

2 Source Tree 7

3 Community 13

4 Rules 17

5 Tools 21
5.1 Internal . 22

5.1.1 Environment . 22
5.1.2 Configure . 34
5.1.3 View . 36
5.1.4 Export . 37
5.1.5 Transcript . 40
5.1.6 Cheat . 40
5.1.7 Test . 41
5.1.8 Prototypes . 51
5.1.9 Control Panel . 53

5.2 External . 55
5.2.1 Mailing-List . 55
5.2.2 Repository . 56
5.2.3 Wiki . 57
5.2.4 Project Management . 58

6 Languages 59
6.1 Make . 60

6.1.1 Naming . 60
6.1.2 Environment . 60
6.1.3 Layout . 60
6.1.4 Style . 61

6.2 Python . 62
6.2.1 Naming . 62
6.2.2 Environment . 63
6.2.3 Layout . 63
6.2.4 Style . 64

6.3 Assembly . 64
6.3.1 Inline Assembly . 64
6.3.2 Naming . 65

3

The kaneton microkernel :: development CONTENTS

6.3.3 Layout . 65
6.4 C . 66

6.4.1 Naming . 67
6.4.2 Layout . 70
6.4.3 Style . 76
6.4.4 Control Structures . 79
6.4.5 kaneton . 81

6.5 LATEX . 83
6.5.1 Naming . 83
6.5.2 Layout . 83
6.5.3 Style . 85

7 People 91
7.1 Project . 92
7.2 Tools . 92

8 Licenses 93
8.1 Pedagogical License . 94
8.2 kaneton License . 96

4

Chapter 1
Introduction

In this chapter, the kaneton microkernel project is briefly introduced in order to emphasize some
of its characteristics that makes contribution specific in several ways.

5

The kaneton microkernel :: development CHAPTER 1. INTRODUCTION

kaneton is a educational purpose microkernel project. This project aims at providing a very
clear, commented and maintainable microkernel source code in order to allow people interested in
operating systems internals to look at the source code and understand it very quickly.

The kaneton project is basically composed of the source code of the microkernel itself, scripts to
perform complex tasks and various documents from design papers to lecture materials.

The most important thing to remember is that the whole project is intended to be understood
as well as possibly maintained by everyone. As a result, contributions must comply with the level
of clarity expected by the project.

These rules are discussed in this paper in order to inform every new contributor of what makes
a good contribution.

The remaining of this document is organised as follows. Chapter 2 introduced the kaneton project
organisation through the source code hierarchy. Next, Chapter 3 describes how a contributor
should behave in a development community. Chapter 4 introduces the general rules which apply
to any context around the kaneton project. Then, the tools inherent to the kaneton project are
listed in Chapter 5 with some guidelines about how to use them properly. Chapter 6 explicitly
describes languages rules informing the developer of the coding style to respect. Chapter 7 draws
a list of the people in charge for the different parts and tools of the project. Finally, Chapter 8
contains information about the licenses related to the kaneton microkernel project.

6

Chapter 2
Source Tree

In this chapter we will briefly describe the kaneton microkernel project source tree.

7

The kaneton microkernel :: development CHAPTER 2. SOURCE TREE

The kaneton microkernel reference source tree looks like the following listing:

boot/

cheat/

configure/

environment/

export/

history/

kaneton/

license/

sample/

test/

tool/

transcript/

view/

boot/

The boot/ directory contains the component related to the kaneton boot process including the
bootstrap and especially the bootloader.

The bootstrap is kept for the kaneton educational project while the bootloader is actually used
for setting up the execution context before launching the kaneton microkernel.

cheat/

Since the kaneton microkernel is implemented by students, the kaneton people need to check
whether students are cheating by re-using parts of previous years projects or other kernel source
codes available on the Internet.

To avoid cheating, kaneton people developed a software checking for commonalities between
different source codes.

This directory contains scripts that performs these verifications. However, the students work
over the years are not stored in this directory but in the history/ directory instead.

configure/

This directory contains everything necessary for configuring its own kaneton microkernel devel-
opment environment through the compiling process to the boot system.

Any new contributor should first look at this directory. However, note that this directory
mainly contains tools targeting final-users rather than kaneton contributors. Indeed, for instance,
the configure utility aims at providing a user-friendly way for configuration but does not take
advantage of the power of the kaneton development environment.

Contributors should then learn about how the development environment works while final-users
should use the configure tool.

environment/

This directory contains everything necessary to the kaneton development environment.

8

The kaneton microkernel :: development

The kaneton development environment allows different developers to interact on the development
of the same microkernel in a pretty easy way.

The development environment aims at providing developers to possibility to work in a collab-
orative manner without interfering with each other. These developers are likely to run different
operating systems on different microprocessors. In addition, the kaneton microkernel can be tar-
geted for different microprocessor architectures. The development environment was introduced
to cope with these combinations by providing profiles, each profile describing the behaviour of a
component: underlying operating system, target architecture, user-specific stuff etc.

As a result, each developer can use a different operating system and microprocessor architec-
ture with its own specific compiling flags, kaneton parameters etc. without modifying another
developer’s configuration.

The development environment is detailed in Section 5.1.1.

export/

The export/ directory contains scripts used to generate a kaneton tarball in order to be distributed
to the students at the beginning of the kaneton educational project.

Indeed, these scripts rearrange the kaneton hierarchy hidding some important directories the
students do not need to be aware of. Moreover some source code parts are removed since the
students have to rewrite these pieces of code as assignments.

These scripts are also used for making backups and distribution tarbalss of the kaneton micro-
kernel.

history/

The history/ directory contains the students work over the years in the universities and schools
the kaneton project was used as an operating system course’s implementation material.

The tools of the cheat/ directory use these students works for performing cheating verifications.

kaneton/

This directory is the most important of the project since it contains the whole microkernel source
code.

The directory is composed of three important subdirectories: core/, machine/ and include/. These
subdirectories are described next.

include/

This directory is the unique include point of the kaneton microkernel.

This directory contains symbolic links to the include/ directories for the machine, glue, platform
and architecture components.

9

The kaneton microkernel :: development CHAPTER 2. SOURCE TREE

core/

This directory contains the kaneton core source code. The core represents the machine-independent
source code/

The directory is divided as shown below:

as/

region/

scheduler/

segment/

set/

task/

thread/

[...]

Each directory represents a kaneton core manager. For more information on the kaneton core,
please refer to the appropriate document: The kaneton microkernel :: core

machine/

This directory contains the machine-dependent source code.

The machine is composed of three components, the plateform which represents the board sup-
porting the devices: microprocessors, memories, peripherals etc.; the architecture which represents
the microprocessor architecture and finally the glue which assemble these two components forming
the machine.

For more information on the kaneton portability system, please refer to the The kaneton micro-
kernel book.

library/

This directory contains whatever the kernel needs i.e. very much like the C library for userland
applications.

modules/

This directory contains additional functionalities that can be statically added to the kernel.

For example, the test system is composed of a kernel part which, when activated, is compiled
and linked with the kernel.

license/

This directory contains the licenses used for any program or document in relation with the
kaneton microkernel project. Indeed, the kaneton microkernel is under the kaneton license which
is described in depth in the documents contained in this directory. Note that these licenses are
also available in Chapter 8.

10

The kaneton microkernel :: development

Each student has to read and agree with the kaneton license before implementing or even using
the kaneton microkernel project..

Indeed, every user of the kaneton-related stuff is considered as having implicitly accepted the
kaneton license.

sample/

This directory contains demonstration servers.

test/

Since the kaneton microkernel is used as a material for operating system courses, the kaneton
microkernel reference, which is the basis of students work, must be extremely reliable.

The kaneton project therefore contains a set of tools in order to validate the kaneton reference
implementation behaviour. These tools are also used for evaluating the correctness of the students
implementation.

The test/ directory contains the set of kaneton scripts and tests for validating a kaneton micro-
kernel implementation.

tool/

This directory contains additional scripts and configuration files used by the kaneton develop-
ment environment or the kaneton developers.

As examples, this directory contains scripts for generating prototypes, building a boot device
etc.

transcript/

This directory contains real-time recorded sessions. These sessions can be replayed in order to
present a feature of the development environment or of the kaneton microkernel.

view/

This directory contains all the kaneton documents including kaneton administrative documents,
examinations, lectures materials, kaneton papers and books etc.

Additionally, scripts are provided in order to very easily build and display these documents.

11

The kaneton microkernel :: development CHAPTER 2. SOURCE TREE

12

Chapter 3
Community

This chapter discusses what is a community and how contributors must integrate the kaneton
community.

13

The kaneton microkernel :: development CHAPTER 3. COMMUNITY

kaneton can obviously be considered as an open source community although the produced soure
code is actually not open source.

Driving an open source community is complicated since people have different personal goals at
working on a free project. Some people contribute for the knowledge, other for building the next
generation system, other to provide free open source softwares, other to become famous etc.

kaneton is a community driven microkernel that acts with the best interest of the students at
heart. Rules and regulations that keep the project moving forward are fundamental even if the
size of the kaneton community is relatively small, for now.

Indeed, the main objective of the kaneton project remains to be as understandable as possible
in order to lead students to implement parts of it very quickly.

The remaining of this chapter draws a list of rules contributors must agree to respect.

Objective

kaneton aims at providing a powerful, understandable and maintainable microkernel. This objec-
tive must be kept in mind of every contributor since many design and implementation were/are/will
be made according to this precise objective.

Note that the kaneton microkernel does not intend to be a desktop operating system nor an as
optimised as the Linux operating system. Every contributor should be well-aware of that in order
to avoid behaviours stating that a feature is fundamental or useless for performance concerns, for
instance.

This rule does not prohibit people to suggest ideas but instead regulates behaviours of people
who wants to change major design and/or implementation choices for bad reasons.

Behaviour

Open source projects does not mean constraint-free projects. The kaneton people, whilst be-
ing relatively young, try to act for the project’s good by behaving remarkably in the kaneton
community.

Therefore, contributors are asked to do the same by avoiding some bad/young behaviours.

1. Follow the rules. People who do not respect these rules could be banned from the kaneton
project.

2. Avoid the cowboy behaviour consisting for a contributor to implement a feature without
discussing about its usefulness with the community first. Another effect of this behaviour
can be to distract the contributors from its major focuses.

3. Always act and think in the project interest rather than your personal interest.

4. Respect the other kaneton people, especially the ones who have worked on this project for a
long time and who made this whole project possible. When people disagree, they are asked
to do it respectfully.

5. Take your responsability when you realise that you did something wrong: insults, mistakes
in an implemented feature etc.

14

The kaneton microkernel :: development

6. “The Perfect is the Enemy of the Good!”: even nice contributors can unintentionally do
bad things by being perfectionists and/or too much into the project and/or obsessed with
process.

7. ... Politness, Respect, Trust and Humility are the key qualities that make a good contributor
in any community.

Communication

The communication mainly takes two forms in the kaneton microkernel project: the mailing-list
for internal communication and the kaneton website for external communication. The Developers
Intranet is another source of communication as well as the commit logs etc.

The rules related to these tools are described in Chapter 5 and will therefore not be discussed
here.

Every contributor must take the time to communicate in the mailing-list as well as through the
public website. Indeed, kaneton people must, frequently, briefly describe what they are working
on in order to inform the other contributors who are not aware of everyone’s current work. Note
that these kind of messages are very different from messages generated by repository commits.
Indeed, while these commit messages indicate a modification, they do not describe the whole work
behind them.

Additionally, contributors can communicate informing the kaneton community of their unavail-
ability for the next two months, for instance. This behaviour allows people to be aware that some
tasks will not be done because the contributors in charge of it cannot work at this moment.

Althoug people are highly welcomed to communicate, some rules apply to avoid further problems.

First, any new contributor should obviously read the kaneton documents before asking anything
which has already been discussed and decided, unless the developer knows exactly what he/she is
talking about. Indeed, asking too many questions about the source code is a form of disrespect
to the other contributors. Moreover, many things can be found out just looking at the kaneton
documents and/or source code.

Although people are asked to communicate, people are also asked to act respectully. Contributors
should not respond to every message in every discussion, this is a ridiculous behaviour. Instead,
every developer should carefully read the discussion, think about its response and then write a
clear message stating his point of view, ideas etc.

Depending on the contributor status, reading the mailing-list frequently is absolutely fundamen-
tal as some people rely on other contributors’ decisions, advices etc.

Finally, the mailing-list must be considered as the official internal communication medium.
If contributors previously had a private conversation, in real-life or on IRC for instance, the
discussion must be reported on the mailing-list so that everyone can take these new ideas into
account.

Work

Working on the kaneton microkernel project does not imply low-level programming all the time.
Indeed, the kaneton project is composed of two parts: the kaneton microkernel research project
and the kaneton educational project.

15

The kaneton microkernel :: development CHAPTER 3. COMMUNITY

Although the microkernel research project requires highly skilled programmers, it also needs
documentations and some tools for performing important tasks as diverse as generating the pro-
totypes, testing the microkernel behaviour, generating the documentation etc.

The educational project essentially needs documentation, lecture materials and tools for man-
aging the project: testing the students’ implementation, checking if some students cheated and
many others.

This means that kaneton people must contribute to every type of task that need to be done. Also,
contributors are asked to well document any work they have done including source code comments
but also through kaneton official documents which are then made available on the website.

Supervisor

A supervisor is attached to each new contributor for a certain, not fixed, period of time. The
role of this supervisor is to advise, correct and encourage the newcomer so that it integrates well
the kaneton community.

The supervisor will be someone having a well understanding of the new contributor’s project.
A high level of communication is expected between the supervisor and the contributor. A direct
phone communication is highly recommanded through Skype for instance.

Trust

A new contributor joining the kaneton project must acquire the trust of the community. There-
fore, the contributor first does not get any access to restricted tools and must submit patches to
its supervisor who review them, taking care of advising the newcomer of its mistakes.

At the end of the test period, the community decides whether the contributor is helpful to the
project or not. Then, the contributor is either granted of full access to kaneton tools or eliminated
from the project.

16

Chapter 4
Rules

This chapter describes the rules which apply to the whole kaneton microkernel project. These
rules can therefore be considered as the most important ones.

17

The kaneton microkernel :: development CHAPTER 4. RULES

kaneton

The most important thing when contributing or talking about a project is to know how to write
its name.

The authors of the project decided kaneton must be written in lower case: kaneton. The same
goes for the kaneton project names which contain a k letter in lower-case: k1, k2, k3 and so on.

Also remember that the kaneton project is composed of two distincts sub-projects named, the
kaneton microkernel educational project and the kaneton microkernel research project.

Header

Files must start with a file header. This file header specifies the project name, the license of
this file, the file name, the author and date of the file creation and finally the author and date of
the last edition. This header must comply to the following template, depending on the sequence
of characters used for comments. The example below illustrates the template for C files.

/*

* ------- header -------------------------------------

*

* project <project>

*

* license <license>

*

* file <file location>

*

* created <first author> [<creation date>]

* updated <last author> [<last update date>]

*/

Then, an example for LATEX files:

%

% ------- header --------------------------------------

%

% project kaneton

%

% license kaneton

%

% file /home/mycure/kaneton/view/book/development/community.tex

%

% created julien quintard [mon may 28 19:44:49 2007]

% updated julien quintard [mon may 28 19:48:07 2007]

%

Note that the kaneton project provides an Emacs file which contains everything necessary to
build such headers. This file is located on the developers’ private Wiki a.k.a. the Developers
Intranet.

Obviously, the project and license fields must be filled, in the kaneton project context, with
kaneton and kaneton, respectively. The author field must contain the author’s full name - firsname
and lastname - in lower-case letters. Note that auto-generated values must comply to the general
kaneton rules especially they must be in lower-case letters and must not exceed 80 characters in
width.

18

The kaneton microkernel :: development

Markings

Any developer must put the sequence XXX everywhere a piece of code is considered as unfinished.
This way, any unfixed piece of code can be easily retrieved via a very simple command line or
script.

Naming

When using a language which does not support namespaces, the developer should prefix every
entity by the package, module etc. name it actually belongs to.

As long as it is possible, entities must be named with a unique word, excluding the namespace
prefix.

Names must obviously be expressed in English, lower-case letters and without any spelling
mistake.

Composite names should be separated by a dash - when the language allows it, including file
names. Otherwise, the underscore character must be used.

Layout

Files are composed of sections in order to make the organisation clearer. Each section starts
with a specific header and then contains code, text etc. related to the section.

A section header is basically a commented separator.

Any file must include a header section as explained above. Moreover, some sections are manda-
tory depending of the type of file. For instance, even configuration files, description files, frame
file, Python files etc. must provide an information section.

Below is an example of a Python script which illustrates the use of sections:

#

------- header --------------------------------------

#

project kaneton

#

license kaneton

#

file /home/mycure/kaneton/foo/foo.py

#

created julien quintard [sun may 13 11:04:52 2007]

updated julien quintard [mon may 28 12:42:57 2007]

#

#

------- information -----------------------------------

#

this script is used to illustrates the use of sections in kaneton

files.

#

#

------- imports -------------------------------------

#

import env

19

The kaneton microkernel :: development CHAPTER 4. RULES

import sys

import re

#

------- globals -------------------------------------

#

g_string = ‘kaneton’

#

------- functions ------------------------------------

#

#

main()

#

this function does the main work: displaying a string.

#

def main():

env.display(env.HEADER_NONE, g_string, env.OPTION_NONE)

#

------- entry point -----------------------------------

#

if __name__ == "__main__":

main()

Files related to any language should provide a section for the core content like rules for Make
files or functions for many other languages.

For more information on the mandatory sections, please refer to the sections about the language
your are interested in and/or look at examples in the kaneton repository.

However, note that a section which does not contain any code must not appear in the file.

Files must not exceed 80 characters in width, including the trailing newline character. Moreover,
the DOS CR+LF line terminator must not be used. Finally, there must not be any whitespace
at the end of a line.

An indentation a two spaces must be used. Moreover, the Emacs default indentation must
always be taken as a referencial.

Rules

Any contributor which notices a misuage of these rules must inform the kaneton community and
especially its supervisor so that the mistake can be corrected.

Moreover if something is missing in this book, any contributor is welcomed to inform the com-
munity about it so that a rule is added or modified.

Contributors are asked to read the rules enumerated in this book but also to look at the kaneton
repository as it contains many examples of applications of these rules.

20

Chapter 5
Tools

This chapter describes every tool kaneton contributors use on a regular-basis.

21

The kaneton microkernel :: development CHAPTER 5. TOOLS

5.1 Internal

The kaneton project contains several tools which makes the developer life easier. This section
describes these tools in order for the contributor to use them but also to understand them well.

5.1.1 Environment

Over the years, the kaneton microkernel evolved, starting with a very simple introduction to
low-level programming and finally to a complete microkernel development.

kaneton people wanted to lead students to a complete microkernel development to finally intro-
duce distributed computing. This would not have been possible if students had to build an entire
development environment because developing such an environment is a whole project by itself.

As a result, kaneton people decided to provide students a complete development environment.
The kaneton development environment is composed of make files, python scripts and configuration
files. This development environment can be considered as one of the major kaneton tools since
contributors use it everytime.

The kaneton development environment aims at providing an easy and portable way for manag-
ing the kaneton microkernel project from a development point of view. Therefore, the kaneton
environment provides everything necessary for compiling, assembling, etc. These tasks highly rely
on the underlying running operating system as well as on the kaneton microkernel’s target micro-
processor. Moreover, the user could need to redefine some behaviours depending on its personal
operating system configuration to use a specific C compiler for instance.

The kaneton development environment provides a layered organisation of profiles, each profile
defining variables and functions used by the final environment engine. The goal of the layered
model is to allow layers to override the definitions of lower-level layers.

Profiles

The development environment is composed of profiles including a host profile which describes
the behaviour of the underlying operating system, a kaneton profile which parameters the kaneton
microkernel and a user profile which permits the user to redefine lower-level layers’ declarations.

These profiles eventually hold sub-profiles which define variables and functions. These actual
profiles are accessed according to user-defined shell variables.

Host

The host profile essentially describes how to perform basic tasks: compile, assemble, change
the current directory, display a message etc. These tasks rely on the operating system currently
running as well as on the target processor which kaneton will be built for. For these reasons, there
are several host sub-profiles.

Let us suppose a developer is running a Linux operating system and that kaneton will be built
for running on a PowerPC microprocessor. In such a case, the C compiler program will be different
depending on the microprocessor Linux is running on. Indeed, if Linux is running on a PowerPC
microprocessor, then using the default compiler should produce PowerPC object files. This is well-
known to be the common compiling way. On the other hand, if Linux is running on a different
microprocessor, then a cross-compiler must be used to produce binary objects targeting a specific
different microprocessor architecture, the PowerPC architecture in our example.

22

The kaneton microkernel :: development 5.1. INTERNAL

To avoid this issue, a host sub-profile name is composed of two parts separated by a slash. The
first part is the name of the operating system and the latter is a pair source/target processors
separated by a period. For example, linux/ia32.ppc names a host profile representing a Linux
operating system on a Intel 32-bit microprocessor which aims at building a kaneton microkernel
for a PowerPC target architecture. Needless to say that linux/ia32.ia32 represents a non cross-
compiling environment.

To avoid configuration duplications, it is common to see the configuration file of a host sub-profile
to include files of the parent directory as shown below:

linux/

linux.desc

linux.conf

linux.mk

linux.py

ia32.ia32/

educational -> .

optimised -> .

smp -> .

ia32.desc

ia32.conf

ia32.mk

ia32.py

ia32.mips64/

mips64.desc

mips64.conf

mips64.mk

mips64.py

Note that the files linux.* are not directly included by the development environment engine since
linux is not a valid host profile name.

Two host profiles are illustrated here. The first one is named linux/ia32.ia32 while the second’s
name is linux/ia32.mips64.

For example, the linux/ia32.mips64 host profile represents a Linux operating system running
on a Intel 32-bit microprocessor while kaneton is built for a MIPS 64-bit target architecture. This
profile is likely to include the linux.* files of the parent directory since there are not much difference
between all the linux/*.* host profiles. However, such a profile will certainly redefine the binary
paths of the C compiler, linker etc. in order to produce MIPS 64-bit binary objects.

To conclude, the host sub-profile is accessed by the following construct:

profile/host/${KANETON_HOST}/${KANETON_ARCHITECTURE}

With, for instance, the following values:

KANETON_HOST = linux/ia32

KANETON_ARCHTECTURE = ia32/educational

Note that the possibility to include files in the configuration syntax allows very similar profiles
to share a huge amount of definitions.

Boot

The boot profile is both used for configuring the boot components such as the loader etc. but
also to set up the way a bootable system is built.

23

The kaneton microkernel :: development CHAPTER 5. TOOLS

kaneton

The kaneton profile is composed of four sub-profiles: core, machine, library and modules for the
kaneton microkernel sub-components respectively. Likewise, machine is sub-divided into platform,
architecture and glue.

The core sub-profile contains variables for parameterizing the kaneton core. The platform and
architecture sub-profiles focus on the configuration of the platform- and architecture-dependent
code of the kaneton microkernel, respectively.

The user-defined shell variables ${KANETON_PLATFORM} and ${KANETON_ARCHITECTURE} are used to ad-
dress the platform and architecture sub-profiles, respectively.

User

Let us suppose that a developer would like the kaneton microkernel to use a specific memory
management entirely based on a Slab Allocator and with all microprocessor optimisations enabled.
These user-specific configurations are actually allowed by the user profile.

The user-defined shell variable ${KANETON_USER} defines the name of the user profile. This profile
contains user-specific configurations allowing a contributor to overwrite lower-level layer defintions
in order to specialise a behaviour.

The kaneton project also provides a tool allowing users to configure their development environ-
ment. This tool is named configure and is available from the kaneton project root directory. For
more information about this tool, please refer to Section 5.1.2.

Requirements

The whole kaneton development environment needs exactly two fundamental tools to work. The
first one is GNU make, used to build powerful make files, and the second one is Python, used to
write portable scripts. If an operating system has these two tools, then kaneton can certainly be
developed on it.

As said previously, the user has to specify some shell variables which are used by the kaneton
development environment engine. These variables are described below:

• ${KANETON_USER}: the name of the kaneton developer.

A user profile name must be composed of the first name, a period and finally, the last name
of the developer.

• ${KANETON_HOST}: the name of the host which is composed of a couple operating system/microprocessor.

• ${KANETON_PYTHON}: the path of the python binary.

This path is required since the very first scripts which set up the configured environment are
written in Python.

• ${KANETON_PLATFORM}: the name of the target platform.

• ${KANETON_ARCHITECTURE}: the name of the target architecture.

Note that once the configured environment is set up, these variables are no longer used by the
kaneton environment engine. Indeed, instead, the kaneton environment operations are based on
the host profile on which rely the configured environment.

The profiles names must all be in lowercase letters. Below are some examples of what could
contain these variables:

24

The kaneton microkernel :: development 5.1. INTERNAL

KANETON_USER=’julien.quintard’

KANETON_HOST=’linux/ppc’

KANETON_HOST=’windows~cygwin/ia32’

KANETON_PYTHON=’/usr/bin/python’

KANETON_PLATFORM=’ibm-pc’

KANETON_PLATFORM=’sgi/o2’

KANETON_PLATFORM=’sgi/octane’

KANETON_ARCHITECTURE=’mips64’

KANETON_ARCHITECTURE=’ia32/educational’

KANETON_ARCHITECTURE=’ia32/smp’

Organisation

The development environment configuration files and scripts are located in the environment/
directory. The directory contains the three following scripts:

critical.py

initialize.py

clean.py

The critical.py script essentially generates a configured development environment. The result
of this generation are two files called env.mk and env.py which contains the configured environment
variables and functions for the Make files and Python scripts, respectively. This file is called
critical because it does not rely on the portable development environment as it generates it.

The initialize.py script relies on the file env.py previously generated. This script set up every-
thing necessary for building the kaneton microkernel based on the configured environment.

Finally, the clean.py script cleans everything installed by the initialize.py script and removes
the generated configured environment files.

The generation of the configured environment is done by going through the configuration files of
all the profiles and sub-profiles associated to the user configuration. In other words, the kaneton
environment engine processes the configuration files according to the layered organisation described
below, starting with the lowest-level layer thourgh the highest one.

profile/

profile/host

profile/host/${KANETON_HOST}.${KANETON_ARCHITECTURE}

profile/boot

profile/boot/${KANETON_PLATFORM}.${KANETON_ARCHITECTURE}

profile/kaneton

profile/kaneton/core

profile/kaneton/machine

profile/kaneton/machine/platform

profile/kaneton/machine/platform/${KANETON_PLATFORM}

profile/kaneton/machine/architecture

profile/kaneton/machine/architecture/${KANETON_ARCHITECTURE}

profile/kaneton/machine/glue

profile/kaneton/machine/glue/${KANETON_PLATFORM}.${KANETON_ARCHITECTURE}

profile/kaneton/library

profile/kaneton/modules

profile/user

profile/user/${KANETON_USER}

25

The kaneton microkernel :: development CHAPTER 5. TOOLS

In this layered organisation, a variable defined in, for instance, the host profile could be over-
written anywhere in the upper-level layers kaneton/, kaneton/architecture/${KANETON_ARCHITECTURE}/,
user/ etc.

The host and kaneton profiles are theoretically completed separated. However, the environment
engine does not check for such unauthorised overridings. Therefore the core configuration could
override a variable previously defined in the host profile.

Finally, the user profile can override any definition to adjust the environment to its needs.

The environment engine looks for the following types of file in the kaneton environment profile
directories:

• .conf: the configuration files contains variable definitions. These files are gathered by the
development environment engine for generating the configured environment files.

• .desc: these description files contain descriptions of the variables of the current profile or
sub-profile. These descriptions are used by the configure tool.

• .mk: the Make files usually contain the implementation of the kaneton Make interface.

• .py: the Python files usually contain the implementation of the kaneton Python interface.

The engine supposes that there is no variable or function overriding in a single profile. More
precisely, if there are more than a single configuration file in a directory, the engine cannot guar-
antee anything on the order these files will be processed. As a result, the overridings could differ
depending on the processing order.

Besides, although the environment engine gathers every configuration files it finds in the en-
vironment profiles directory, it is highly recommended to provide a single configuration file per
profile directory. This file should be named according to the name of its profile. For more details,
take a look at the environment directory which contains existing profiles.

Moreover, the configure tool requires the user profile to contain a single configuration file named,
as explained above, ${KANETON_USER}.conf.

The kaneton development environment engine first gathers the configuration files and process
them creating an in-memory list of configuration variables. Then it generates the configured
environment files env.mk and env.py. Indeed, the engine outputs the configuration variables in each
file and then append the content of the Make files and Python files of the profiles to the configured
environment files env.mk and env.py, respectively.

Note that a special rule is included in env.mk so that the configured files are regenerated if the
environment engine detects that an environment file has been changed since the last initialization.

Syntaxes

Description

The description files describe the environment variables in order to specify what kind of value a
variable can take etc.

The description syntax is based on the YAML language.

Examples of variable descriptions named _FOO_, _BAR_ and _CHICHE_ are given next:

26

The kaneton microkernel :: development 5.1. INTERNAL

#

FOO

#

- variable: _FOO_

string: the foo flag

type: set

values:

Off: -D_FOO_FLAG_=0

On: -D_FOO_FLAG_=1

description: |

This is a description of a two-state variable _FOO_.

#

BAR

#

- variable: _BAR_

string: the bar parameter

type: set

values:

Simple: ${BAR_SIMPLE}

Normal: ${BAR_NORMAL}

Optimised: ${BAR_OPTIMISED}

description: |

This is another parameter which can take three values: simple,

normal and optimised.

#

CHICHE

#

- variable: _CHICHE_

string: the most powerful optimisation

type: any

description: This is the magic kaneton optimisation.

Note that the environment engine never takes these descriptions into account. Indeed, this is
the role of the configure tool.

In this syntax, variables are classified according to the type of value they can take: set and any.

A set variable can take any value in a given list of values. In this case, the values field contains
couples string/value the variable can take. The string is displayed by the configure tool while the
value is assigned to the variable.

Finally, a any variable represents a variable which can take any value.

The string fields were introduced to avoid displaying internal non user-friendly variable names
and/or values. Therefore, the configure tool will always display literal strings rather than variable
names or values which are likely to do not make any sense to the user.

Configuration

The configuration files contains the actual variable definitions through a very simple syntax.

The syntax allows both assignments and completion as shown in the next example:

FOO = bar

FOO += baz

FOO = kaneton

The FOO variable first takes the initial value bar. Then, the value baz is added to the previous FOO’s
value leading the the value bar baz. Finally, the last assignment overwrites the previous definition
by setting the value of FOO’s variable to kaneton.

27

The kaneton microkernel :: development CHAPTER 5. TOOLS

The configuration syntax enables variable references. These references can be both environment
variable or shell variable. The following example illustrates this.

BAR = ${FOO} is a very powerful microkernel

SH = the shell currently used is $(SHELL)

The reader certainly notice the ${} construct is used to reference a kaneton environment variable
while the $() one references a shell variable.

Finally, a configuration file can also include another file using the include statement:

include ../an/other/file/far/../far/../away

This construct is very useful to centralize definitions common to multiple profiles or sub-profiles
in a single location.

Note that kaneton environment variables start and end with an underscore to avoid naming
collisions. Another solution would have been to use a prefix KANETON_ as it is stipulated in the
general kaneton rules but this would have led to very long names.

Make

The Make files must implement the whole kaneton Make interface which will be described next.

The syntax used in these files is based on the GNU Make syntax.

Python

The Python files must implement the whole kaneton Python interface.

The syntax used in these files is based on the Python syntax.

Interfaces

Make

In this section we will detail the make interface that every host profile must implement. The
reader should look closer to the host profiles already implemented.

Since the GNU Make syntax does not provide any name space feature, every kaneton Make
function is prefixed by env_ in order to avoid name conflicts.

Note that the Make development environment must take care of setting the PYTHONPATH shell
environment variable with a value including the _PYTHON_INCLUDE_DIR_ kaneton environment variable
so that scripts can use kaneton Python packages.

env_perform(command)

This function performs an action according to the given command argument.

Additionally, if the _OUTPUT_ environment variable is set to ${_OUTPUT_VERBOSE_},
the function displays the command on the output before performing it.

env_display(color, action, file, indentation, options)

28

The kaneton microkernel :: development 5.1. INTERNAL

This function displays a message representing an action performed by the
kaneton Make interface.

The option $(OPTION_NO_NEWLINE) can be used not to output the trailing newline.

env_cd(directory, options)

This function changes the current working directory.

env_pull(file, options)

This function returns the content of the file.

env_launch(file, arguments, options)

This function launches a new program/script/make etc.

This function must look at the file name in order to determine how to launch
it. Moreover, the function must move the the directory where is located the
file before launching it.

env_preprocess(preprocessed file, c file, options)

This function launches the C preprocessor the c file and generates the pre-

processed file.

env_compile-c(object file, c file, options)

This function compiles a c file generating an object file.

env_lex-l(c file, lex file, options)

This function generates a c file from a lex file.

env_assemble-S(object file, S file, options)

This function assembles an S file.

env_static-library(static library file name, object files and/or libraries, options)

This function builds a static library from object files.

env_dynamic-library(dynamic library file name, object files and/or libraries, options)

This function builds a dynamic library from object files and/or libraries.

env_executable(executable file name, object files and/or libraries, layout file, options)

29

The kaneton microkernel :: development CHAPTER 5. TOOLS

This function builds a executable from object files and/or libraries. The layout

file describes where to place the different data: code, read-only data, stack
etc.

The option $(ENV_OPTION_NO_STANDARD) tells the function not to use the operating
system standard stuff: libraries, includes etc.

env_archive(archive file name, object files, options)

This function builds an archive of objects from multiple object files.

env_remove(files, options)

This function removes the files in the list.

env_purge()

This function just cleans the current working directory from unecessary files.

env_prototypes(files, options)

This function generates prototypes in relation with the given files.

env_headers(files, options)

This function generates header dependencies for the files by building a Make
dependency file named ${_DEPENDENCY_MK_}.

The generated files ${_DEPENDENCY_MK_} are removed by the environment engine
when cleaning the configured development environment.

env_version(file)

This function generates a version file from the operating system’s informa-
tions: user, host, date etc.

env_link(link, file, options)

This function creates a link to the file.

env_compile-tex(file, options)

This function compiles the file file.tex and generates a readable document.

env_document(file, options)

30

The kaneton microkernel :: development 5.1. INTERNAL

This function builds a document by calling the env_compile-tex() function.

The option $(ENV_OPTION_PRIVATE) configures the document by setting the LATEX
definition \mode to the value private. This option was introduced to deal
with documents which contain information which must be kept private to the
students.

Note that a temporary file named ${_DEPENDENCY_TEX_} is created by this func-
tions storing the LATEX definition \mode. The developer should take care of
removing this file in the clear Make file rule.

env_view(file, options)

This function launches a viewer for the readable document generated by the
function env_compile-tex().

Note that file, as for the env_compile-tex() function, does not have any filename
suffix.

Python

In this section we will detail the kaneton Python interface that every host profile must implement.

The Python language was designed in a portable way. For this reason, the major part of the
Python interface is implemented by the host generic profile.

Note that the Python language provides modularity through packages. Therefore, each Python
script has to import the env package generated by the development environment engine: environ-

ment/env.py. Then, environment functions and variables are accessed through this package.

Below are described the functions implemented by the env package.

Note that the Python development environment must take care of setting the PYTHONPATH shell
environment variable with a value including the _PYTHON_INCLUDE_DIR_ kaneton environment variable
so that scripts can use kaneton Python packages.

display(header, text, options)

This function outputs some text to the screen depending on the header:
HEADER_NONE, HEADER_OK, HEADER_ERROR or HEADER_INTERACTIVE.

pull(file, options)

This function returns the content of the file.

push(file, content, options)

This function writes the content in the file.

temporary(options)

This function creates a temporary file system object.

The options OPTION_FILE and OPTION_DIRECTORY specify which type of object to
create.

31

The kaneton microkernel :: development CHAPTER 5. TOOLS

cwd(options)

This function returns the path of the current working directory.

input(options)

This function waits for an input from the user.

launch(file, arguments, options)

This function launches a new program/script/make file etc.

This function must look at the file name in order to determine how to launch
it. Moreover, the function must move the the directory where is located the
file before launching it.

The option OPTION_QUIET makes the launch() function do not print anything on
the output screen.

copy(source, destination, options)

This function copies the file source to destination.

link(source, destination, options)

This function builds a link between the file source and the file destination.

remove(target, options)

This function removes the target which can be either a file or a directory.

list(directory, options)

This function lists the file system objects contains in the directory.

The options OPTION_FILE and OPTION_DIRECTORY specify which type of object to
list.

cd(directory, options)

This function changes the current working directory to directory.

search(directory, pattern, options)

This function looks for files matching the given pattern.

The options OPTION_FILE and OPTION_DIRECTORY specify which type of object to
list while the OPTION_RECURSIVE option tells the function to explore the whole
file system sub-tree.

pack(directory, file, options)

32

The kaneton microkernel :: development 5.1. INTERNAL

This function makes an archive file of the directory.

unpack(file, directory, options)

This function extracts the archive file into the directory, if specified.

mkdir(directory, options)

This function builds a new directory named directory.

load(file, device, path, options)

This function copies the file on the specificed device, more precisely at the
location path. The device can be virtual: an image.

The options OPTION_DEVICE and OPTION_IMAGE specify on which type of device the
file must be copied.

stamp(options)

This function returns a current date.

record(transcript, options)

This function starts recording a session and transcripts it into transcript.

play(transcript, options)

This function plays a previously recorded transcript.

locate(file, options)

This function tries to locate the program file on the system.

path(path, options)

This function returns information on the given path.

The options OPTION_FILE and OPTION_DIRECTORY specify which information the
caller is interested in. The option OPTION_EXIST indicates whether the path

object exists or not.

info(options)

This function returns information on the system.

The option OPTION_CURRENT_DIRECTORY returns the sequence of characters used
for accessing the current directory.

33

The kaneton microkernel :: development CHAPTER 5. TOOLS

5.1.2 Configure

The configure tool provides the final user a very user-friendly software for customizing its devel-
opment environment.

Recall the development environment is basically composed of three profiles: host which describes
the operating system behaviour, kaneton which parameterizes the kaneton microkernel and user
which contains some user-specific definitions.

The kaneton development environment is thus used to configure the environment behaviour as
well as the kaneton microkernel itself.

The environment/ directory, and more precisely the environment profile directories, contain de-
scription files which actually describe the environment variables. These files are not used by the
development environment but rather by the configure tool.

The configure/ directory is composed of frame files which contain frame descriptions. A frame
can be seen as a menu presented to the final user. A frame is composed of meta-data but also
sub-frame and variable entries.

The configure tool works as follow. It starts by processing the environment development config-
uration files as the environment engine did for the generation of the configured environment files.
Note that the configure tool also processes the description files. Also, it focuses on variables and
actually ignores the Make and Python functions.

Once this step is done, the tool gets a list of configured and fully described variables. Then, the
configure tool displays the first frame and waits for the user to choose an entry.

The user has the possibility to either move to another menu - if any sub-frame entry is present -
or configure a variable of the list. If the user chooses to configure a variable, then, the tool displays
information based on the variable’s description.

Every modifications of the development environment are private to the actual user. Therefore,
any variable modification adds or modifies an entry in the related user profile’s configuration file.

Note that the configure tool is not an environment configuration files editor. Indeed, this tool
targets final users and therefore tries to be as simple as possible.

The basic configure behaviour consists in displaying the final variable’s value. If the user enters a
new value, no matter whether there is a relation with its previous value, the tool creates/modifies
an entry in the user profile’s configuration file overriding any previous definition.

For instance, consider the _FOO_ development environment variable and the following configura-
tion files:

In environment/profile/environment.conf:

FOO = initial

In environment/profile/core/core.conf:

FOO += addon

Let us suppose the user enters the following value instead of the current one: initial addon.

FOO = something new

34

The kaneton microkernel :: development 5.1. INTERNAL

Then, the configure tool creates a new entry into the user profile configuration file:

FOO = something new

Finally, note that when the configure tool is launched, it first tries to detect whether the user is
a newcomer or not. If it is, then the tool asks the user to create a new user profile, step by step.
These actions are performed in the critical.py script of the configure/ directory.

Requirements

The configure tool relies on the Dialog software which is present on many Unix systems. Indeed,
the configure tool is a user-friendly configuration utility.

Since configure needs to update the user profile configuration file, this file must be unique and
easy to locate. Therefore, the configure tool supposes this configuration file is accessible at:

environment/profile/user/${KANETON_USER}/${KANETON_USER}.conf

Finally, the Python module PyYAML is required as the description and frame files use the YAML
syntax, as described next.

Syntax

The syntax of the frame files .frm is based on YAML.

As said previously, a frame is composed of sub-frame and variable entries. A sub-frame entry
contains a name and a path to the sub-frame frame file while a variable entry only contains the
name of the variable. This variable name is then used to retrieve the variable description.

In addition, a section containing a title and a description is used to customize the display
presented to the user.

The example below illustrates this very simple syntax:

#

------- information -----------------------------------

#

this is the main menu of segment manager.

#

#

------- general -------------------------------------

#

- title: Segment Manager

description: |

This section contains configuration about the core segment manager.

#

------- frames --------------------------------------

#

- frame: Optimisations

path: subsections/optimisations.desc

- frame: Machine-dependent

path: subsections/machine.desc

#

35

The kaneton microkernel :: development CHAPTER 5. TOOLS

------- variables ------------------------------------

#

- variable: _FOO_

- variable: _BAR_

- variable: _CHICHE_

5.1.3 View

The view tool serves as a document database as well as a tool for building and displaying
documents in an easy way.

The kaneton documents are classified, each directory corresponding to a class of documents.
Below are listed the subdirectories of the view/ directory.

bibliography/

book/

exam/

feedback/

figures/

internship/

lecture/

logo/

package/

paper/

talk/

template/

The template/ directory contains templates for every class of document. The bibliography/ and
logo/ directories contain, obviously, the bibliography which is common to all the documents, and
the logos, respectively. The figures/ directory contains figures common to all the documents while
the package/ directory contains additional LATEX packages.

The directories curriculum/, exam/ and feedback/ contain documents in relation with teaching. The
curriculum/ directory contains documents such as the educational project year planning etc. The
feedback/ directory contains documents which are distributed to the students at the end of the
kaneton project in order to get feedback for improving the project for the next years. Needless
to say the exam/ directory contains everything related to examinations while the talk/ directory
contains conference talks and various presentations of the education project for instance.

The other directories contain the actual kaneton documentation. The books represent the main
documents targeting any public: contributors, teachers, students etc. The papers are lighter
documents intended to present a specific feature, design etc. The lectures are the courses materials,
generally composed of presentation slides. Finally, the internship documentation is composed of
documents written by people partially involved in the kaneton project.

Any document is composed of a Make file and one or more LATEX files. The Make file always has
the same form with little variations depending on the type of document. For more information on
the rules applying to the Make and LATEX files, please refer to their respective sections: Section
6.1 and Section 6.2.

The view tool basically starts looking for .tex files and builds a list of directories containing
documents. Then, it provides to the user the possibility to build and display a given document.
If no document name is given on the command line, then the tool draws a list of the available
documents.

36

The kaneton microkernel :: development 5.1. INTERNAL

People contributing to the kaneton documents must take care of following the rules in rela-
tion with the LATEX language. Moreover, contributors should look at the existing documents to
understand to logic behind all these rules.

Finally, note that nobody should create a document without discussing it on the mailing-list first.
Especially, be very careful in naming your documents as people took good care of this directory
in order to avoid it to become messy.

If a document already exists with the same name, then go through the mailing-list in order
to decide whether to keep the current version. If people decide to keep a document, then, the
contributor in charge of writing the new one should re-organise the documents by creating archives
for each year.

5.1.4 Export

The export tool was introduced for making the releasing process easier. The tool does its job
based on action description YAML files.

Recall the kaneton microkernel project is used as a material for operating system courses. The
source code of the microkernel is distributed to the students with some parts missing. Then,
students have to re-write these pieces of code in order to prove their well-understanding of the
kernel internals. Additionnaly, the kaneton project is also a research project in operating systems
design.

As a result, the export tool sometimes has to build a release with pieces of code removed,
sometimes not. The tool has been build to be flexible enough to fulfil multiple needs.

The tool is build on a modular approach. Each module provides an action that can be used
within a YAML file.

A YAML file describes the sequence of actions to be performed to make an export. All the
operations are performed in a temporary directory displayed at the begin of the export.

Here is the list of the currently available modules :

• svnexport This module takes no argument. It performs an svn export of the kaneton SVN
repository.

• localexport This module takes no argument. It performs a copy of the user’s working copy.

• import This is a built-in module, it takes one argument : filename. This argument is the
name of another YAML file to import and run. The YAML file has to be in the export
folder, no path and no file extension should be put in the argument.

• initenv This module takes no argument. It de-initializes the kaneton environment. It can be
used after calling localexport to clean the environment before making a snapshot.

• fremovepattern This module deletes every file or directory that matches the pattern argument
which is a regular expression. For instance, to clean the export of all the subversion folders,
the pattern .*\.svn can be used.

• fremove This module deletes the file or directory described in the argument path. It should
be a relative path based on the repository root directory, like for instance : boot/bootloader.

• fmove This module moves the file or directory described in the argument src to the path
described in the argument dst. If the entity to be moved is a file, the dst argument must be
a filename, not a directory where the file should be moved.

37

The kaneton microkernel :: development CHAPTER 5. TOOLS

• freplace This module copies the file described in the argument src to the path described in
the argument dst. The dst argument must be a filename, not a directory where the file should
be copied. This module can be used to replace files by templates stored in export/data.

• symlink This modules creates a symbolic link named by the argument name pointing to the
file described in the argument target.

• bremove This module removes a block of lines in a file. It takes one argument : id which has
this syntax : path/to/file::block_name. The syntax of blocks declaration is explained below.

• breplaceThis module replaces a block of lines in a file. It takes two arguments : id which
has this syntax : path/to/file::block_name and data which is the text to be put instead of the
removed lines. The syntax of blocks declaration is explained below.

Blocks Syntax

As explained previously, pieces of code are being identified by blocks, in order to be processed
by the export tool.

The code below illustrates how to tag some code to make a block:

/* [block::clone] */

/*

* this function clones a segment.

*

* steps:

*

* 1) get the original segment object.

* 2) reserve a new segment of same size with same permissions.

* 3) copy the data from the old segment.

* 4) call machine-dependent code.

*/

t_error segment_clone(i_as asid,

i_segment old,

i_segment* new)

{

o_segment* from;

t_perms perms;

SEGMENT_ENTER(segment);

/*

* 1)

*/

if (segment_get(old, &from) != ERROR_NONE)

SEGMENT_LEAVE(segment, ERROR_UNKNOWN);

[...]

/*

* 4)

*/

if (machine_call(segment, segment_clone, asid, old, new) != ERROR_NONE)

SEGMENT_LEAVE(segment, ERROR_UNKNOWN);

SEGMENT_LEAVE(segment, ERROR_NONE);

}

/* [endblock::clone] */

38

The kaneton microkernel :: development 5.1. INTERNAL

The markings at the top [block::clone] and bottom [endblock::clone] of this example indicate
the export tool that the block called clone in this file contains the function segment clone. This
block can then be used in YAML files to perform actions such as removal or replacement on the
content of this block.

Note that the marked areas must not overlap, the export tool’s behaviour being undetermined
in such cases.

YAML Syntax An export is described in a YAML file. It contains a list of modules to call
with their arguments. The tag for the module to call is operation. Some optional tags must be
added, depending on the module that is being called.

Here is an example of a YAML file :

--

-

operation: localexport

-

operation: initenv

-

operation: fremovepattern

pattern: .*\.svn

-

operation: import

filename: k1

-

operation: fremove

path: tool/ctc

-

operation: fmove

src: kaneton/libc

dst: libc

-

operation: freplace

src: export/data/Makefile

dst: Makefile

-

operation: breplace

id: kaneton/core/id/id.c::test

data: |

if (a)

b = 2;

else

c = 3;

-

operation: bremove

id: kaneton/core/core.c::foo

-

operation: symlink

name: kaneton/core/test

target: kaneton/core/region

All the paths that are used must be relative to the repository root directory.

39

The kaneton microkernel :: development CHAPTER 5. TOOLS

Usage

All YAML files must be in the export/ directory.

They can be called by running : make export-filename where filename is the name of a YAML file
without the extension.

It’s important that the YAML file that is run starts by one of the two export commands :
svnexport or localexport. For that reason, all YAML files are not executable, since some of them
are being imported by others.

Note that the commands are executed within the temporary directory sequentially. If your
YAML script moves a folder, all other commands following the move command dealing with files
in that folder must refer to the new location of the folder within the temporary folder.

You have to write a YAML file for each export need you have, but operations can be factorized
by using the import command.

The export tool doesn’t make a tarball for the moment. Instead, it displays the temporary folder
when run, and does all the work in that folder, so the user can then make a tarball of this folder,
or work in this folder directly.

5.1.5 Transcript

The transcript/ directory is composed of two tools related to the management of transcripts.
The record tool captures a shell session while the play tool replays a captured session.

These tool were introduced to allow students to make a dynamic presentation of their kaneton
implementation’s features and possibilities. These dynamic presentations were supposed to replace
the oral examinations.

These transcripts are not used by the main contributors of the kaneton project yet. However,
any teacher interested by this tool can use it.

The transcript/ directory contains subdirectories which classify the transcripts.

The only transcript class currently in place is named basic and contains transcripts illustrating
the use of the kaneton internal tools.

Note that the Unix host profiles rely on the well-known Unix script software. Moreover, a tool
is provided in tool/script/ for replaying script captured sessions.

5.1.6 Cheat

The cheat tool checks whether students cheated by using pieces of code from other students’
implementation of the current and/or previous years.

The history/ directory is composed of directories organizing the kaneton students implementa-
tions over the years and for every school and university the education project has been used for.
Then, each subdirectory represents a year and contains subdirectories for each students group of
this year.

Each student group directory contains a sources/ subdirectory containing the snapshots of the
different kaneton stages: k0, k1, k2 and so on.

40

The kaneton microkernel :: development 5.1. INTERNAL

The cheat tool takes a school, a year and a stage as arguments. Its first task is to generate the
fingerprints of the other kaneton implementations.

Once the fingerprints have been generated, they are gathered into a database file. The tool then
performs the verification process by comparing snapshots against each others.

Note that in order to prevent the tool from detecting matches in the source code that has been
provided by the teachers, the tool first removes the parts common to both the students snapshots
and the base snapshot. Additionally, to reduce the amount of work to be done, everything con-
tained in the _CHEAT_FILTER_ environment variable is removed from the students’ snapshots. This
variable is likely to contain directories such as environment/, license/, tool/ etc.

Finally, the tool generates a HTML page summarising the matches found between the students.
The matches are classified according to the number of tokens found.

Note that teachers are asked to add student snapshots to the repository in a careful way, taking
care that snapshots do not contain any object file, revision control directories such as .svn/ etc. and
that once extracted, the snapshot produced a single kaneton/ directory. Moreover, if the student
snapshot does not follow the base organisation, false-positive matches will emerge.

The cheat tool is based on another tool whose name cannot be revealed here. For more infor-
mation, please contact your supervisor.

5.1.7 Test

The test tool enables students to test their kaneton implementation against a set of tests that
have been designed by the contributors. Below is briefly described the terminology used by this tool
in order to give the reader an overview of the general scenario involving students, the administrator
and the server running the test system.

• A certificate is used to make sure clients can authenticate the test server;

• Every certificate is sealed by a cryptographic key ;

• Each user is provided with a capability in order to identify herself to the server;

• These capabilities are sealed by a code which the server uses in order to detect illegally forged
capabilities;

• A configuration specifies the number of tests a user is allowed to requests the server;

• The user’s database is generated based on a configuration and maintains the current user’s
state on the server including the number of tests performed so far, the kaneton implementa-
tions submitted for evaluation etc.

• A snapshot is a kaneton implementation in its shipping form;

• The machine represents the target platform/architecture couple on which a snapshot is
supposed to be tested or evaluated for instance;

• An image represents a kaneton snapshot compiled in a bootable form;

• A test is a function included in the kernel which performs a specific set of operations and
possibly prints information to the console;

• The tests are often gathered together in a suite which represents the testing unit students
are offered to trigger for their kaneton implementation;

41

The kaneton microkernel :: development CHAPTER 5. TOOLS

• Once a snapshot is received by the server in order to be tested, the system compiles it into
an image. The server also takes care to include the tests in the compilation process so that
they can be triggered. These pre-compiled tests are referred to as the bundle;

• The image can then be tested by triggering the tests of the suite. The image is therefore
booted in an emulated environment. This environment can sometimes be chosen and offers
a trade-off between simplicity and realism. The most common environments are QEMU and
Xen;

• Depending on the success of the tests, a set of results is generated and compiled in a bulletin
file;

• Finally, the server retrieves this bulletin, adds some meta information such as the date of
the test, the environment and machine used etc. and stores everything in a report. Note
that this report is also sent back to the user so she can consult it;

• Students can also decide to submit their kaneton implementation for a specific stage for
future evaluation. Note that suites and stages are completely different though they often
bear the same names: k0, k1, k2 etc;

• The administrator can decide to evaluate the snapshots which have been submitted for a
stage by invoking a script which will attribute grades according to the points associated with
every test.

• Finally, a statement is produced containing the grades of every student for a given stage.

The following describes the test tool according to the user’s role regarding the system: either
the administrator who sets up the system or a student who uses it in order to improve and/or
evaluate his implementation.

Administrator

The administrator is responsible for setting up the system but also maintaining it on a daily
basis.

Requirements

The test tool must be installed on a publicly accessible server since the server script will be
waiting for incoming requests. Note that by default, the clients assume the test server to be
accessible at the address: https://test.opaak.org:8421.

Besides, since the purpose of the test tool is to run the students’ kaneton implementation in
emulated environments, both QEMU and Xen should be available though one might want to
configure the tool for supporting a single environment, QEMU for instance.

Note that the test system has been developed with Python 2.6 and may be out of date by the
time the administrator sets it up. In addition, the system depends on a variety of Python packages
including argparse, yaml, pyopenssl, hmac, pickle, xmlrpc, subprocess among others.

Finally, the administrator should make sure the following applications are installed since some
test scripts need them: dd, mkfs.ext2, mount, umount, mutt and mkisofs.

Set Up

The first step for an administrator consists in generating the necessary files, especially the
certificates, code and capabilities required for securing the test system.

42

The kaneton microkernel :: development 5.1. INTERNAL

The test/utilities/ directory contains the scripts that perform such operations. Note that all
the generated files are stored in the test/store/ directory.

First the CA - Certification Authority ’s and server’s certificates must be generated. The first
is used to issue certificates while the latter is used for clients to identify the server with absolute
certainty.

$> make certificate

[+] generating the CA and server’s key/certificate pair

[+] CA key/certificate generated

[+] server key/certificate generated

[+] CA and server’s key/certificate pair generated and stored

$>

The next step consists in generating a code for the administrator to issue capabilities but also
for the server to verify that the received capabilities have not been illegally forged.

$> make code

[+] generating the server’s code

[+] server code successfuly generated and stored

$>

With a server code, the students’ and contributor’s capabilities can be built, hence granting
them the right the contact the server.

The following generates the contributor’s capability. This capability is special in the way that
contributors can perform any operation in a completely contrain-free manner.

$> make capability-contributor

[+] generating the contributor’s capability

[+] contributor’s capability generated and stored

$>

In contrast, the following command generates a set of capabilities for the students belonging to
the school referred to as “epita::2010”. Note that the script requires the history/epita/2010/ to be
populated with the groups and their people file.

$> make capability-school@epita::2010

[+] generating students’ capabilities

[+] extracting the students from the history ’epita/2010’

[+] students information retrieved

[+] generating the students’ capabilities:

[+] epita::2010::group11

[+] epita::2010::group10

[+] epita::2010::group13

[+] epita::2010::group12

[+] epita::2010::group33

[+] epita::2010::group32

[+] epita::2010::group17

[+] epita::2010::group30

[+] epita::2010::group19

[+] epita::2010::group18

[+] epita::2010::group5

[+] epita::2010::group4

[+] epita::2010::group7

[+] epita::2010::group6

[+] epita::2010::group1

[+] epita::2010::group3

43

The kaneton microkernel :: development CHAPTER 5. TOOLS

[+] epita::2010::group2

[+] epita::2010::group15

[+] epita::2010::group9

[+] epita::2010::group8

[+] epita::2010::group14

[+] epita::2010::group31

[+] epita::2010::group16

[+] epita::2010::group24

[+] epita::2010::group25

[+] epita::2010::group26

[+] epita::2010::group27

[+] epita::2010::group20

[+] epita::2010::group21

[+] epita::2010::group22

[+] epita::2010::group23

[+] epita::2010::group28

[+] epita::2010::group29

[+] epita::2010::group34

[+] students’ capabilities generated and stored

$>

In addition, the administrator could decide to generate or re-generate a capability for a specific
student of a school. The following shows an example for such an action.

$> make capability-student@epita::2010::group8

[+] generating the student’s capability:

[+] epita::2010::group8

[+] student’s capability generated and stored

$>

The next step consists in the databases generation. A database contains the state of a user
profile including the number of test requests, the quota for such tests, the submitted snapshots
and so forth. The database files are absolutely fundamental to the server since such databases are
updated after each client’s request.

The syntax for generating databases follows the one for capabilities, as shown next for the
contributor.

$> make database-contributor

[+] generating database from contributor’s configuration

[+] contributor’s database generated and stored

$>

Once the certificates, code, capabilities and databases generated, the administrator can move on
to the deployment process.

Deployment

The deployment basically consists in copying the test/ environment to the test server though one
might want to copy the whole kaneton environment or the smallest subset of the test/ directory
which should, in this case, include the following absolutely necessary items:

• The test/environments/ directory which contains the descriptions of the supported test envi-
ronments;

• The test/images/ directory which contains a script for automatically generating a Debian
Live system which is used for compiling a kaneton snapshot into a bootable image;

44

The kaneton microkernel :: development 5.1. INTERNAL

• The test/packages/ directory which contains the ktp - Kaneton Test Package required by the
server-side standalone scripts for manipulating files such as databases, capabilities etc. but
also for performing cryptographic operations and send/receive XMLRPC requests;

• The test/scripts/ directory which contains the fundamental scripts for building bootable
images, distributing the capabilities to the students through emails, evaluating the submitted
snapshots and so on;

• The test/server/ directory which contains the server script for handling the clients’ requests;

• The test/stages/ directory which contains the files requirement for evaluating the students’
snapshots;

• The test/store/ directory which contains the generated files such as the users’ databases, the
server’s code and certificate; and

• The test/suites/ directory which contains the files describing the tests to be including in a
given tests suite.

Once copied, the administrator only needs to launch the server script located in the test/server/

directory, as shown below:

$> ./server.py

[meta] serving on 88.191.84.128:8421

Note that a few additional steps may be required depending on the current state of the kaneton
development.

The first of these steps may consist in generating a Debian Live system since this is absolutely
required for the test system to work. For more information regarding the generation of such an
image, please refer to the test/images/ directory.

The second step should consist for the administrator in building the kaneton tests bundle. The
bundle represents a pre-compiled set of tests that is included in the students’ snapshot compilation
process. The tests are pre-compiled in order to prevent leaking information since students could
very well dump the content of those tests and force the compilation to fail, hence retrieving the
source code in the compilation process’ error log.

In order to generate such a bundle, the administrator must first activate the test module, as
show next:

MODULES += test

Then, the administrator must move to the test/tests/ directory and launch a compilation process
through the following command:

$> make

Once generated, the test bundle, located in store/bundle/[machine]/ must be copied to the server,
at the same location.

Finally, for more information on the server script, please refer to the test/server/ directory.

Scripts

45

The kaneton microkernel :: development CHAPTER 5. TOOLS

Although the deployment process is pretty straightforward, the administrator is required to
manage the test system through several scripts.

First, the distribute script must be used by the administrator to send the capabilities to the
respective owners so that the students can use the test system. Note that this script relies on the
Mutt mailing system for sending the emails containing the attached capabilities.

$> ./distribute.py

recipients:

contributor

$>

While the construct script enables the administrator to build a bootable image from a kaneton
snapshot, the stress script takes a bootable image and triggers the tests belonging to the given
test suite. Note that both scripts are directly used by the server script for building and testing
the received kaneton snapshots.

$> ./construct.py -snapshot kaneton.tar.bz2 \

-image kaneton.img \

-environment xen \

the kaneton image has been constructed in ’kaneton.img’

$> ./stress.py -image kaneton.img \

-suite k2 \

-environment xen \

-verbose

segment

permissions/01 :: true

id

simple :: true

clone :: true

multiple :: true

$>

Note that the administrator could also test a kaneton image manually, especially through the
following command:

$> qemu -fda kaneton.img -curses

Besides, note that an administrator willing to include a new test in the system would prob-
ably want to test it locally first since testing through the server takes some time. In order to
test locally, the administrator must first activate the bundle module in its user profile environ-

ment/profile/user/$KANETON_USER/$KANETON_USER.conf:

MODULES += bundle

Then, the administrator must trigger the test by calling the test function manually in its kaneton
implementation. For instance, in order to trigger the kaneton/core/task/guest test, the adminis-
trator could add the following line after kernel_initialize() and before running the test system in
kaneton/core/core.c:

[...]

module_call(console, message,

’+’, "starting the kernel\n");

46

The kaneton microkernel :: development 5.1. INTERNAL

assert(kernel_initialize() == ERROR_OK);

/* XXX[temporary] */

test_core_task_guest();

module_call(test, run);

[...]

Once the kaneton image rebuilt, the administrator can boot it locally through QEMU and get
the output, hence check that the test went as excepted:

$> qemu -fda environment/profile/user/${KANETON_USER}/${KANETON_USER}.img

Back to the server side, the evaluate script can be used by the administrator in order to assign
grades to the snapshots submitted by the students. The script generates a statement containing
the results of this evaluation process.

$> ./evaluate.py -stage k2 \

-pattern "^epita::2010::.*$"

the statement has been saved in ’../store/statement/20101102-223645.db’

$>

Finally, the dump script takes any YAML-based file and displays its inner structure in a hierar-
chical manner.

$> ./dump.py -path ../store/statement/20101102-223848.db

meta:

reference: 20.0

stage: k2

data:

epita::2010::group7:

date: 2010/11/02 20:46:44

grade: 16.0

snapshot: 20101102-204644

members:

email: admin@opaak.org

name: admin

configurations:

Xen:

report: 20101102-224213

notch: 4

score: 4

QEMU:

report: 20101102-223848

notch: 4

score: 0

Student

The student has the possibility to request actions from the test server through the client script
located in test/client/.

Requirements

Although the client script is integrated in the kaneton environment, it also makes use of the ktp.
Therefore, as for the server, the client depends on a variety of Python packages including yaml,
pyopenssl, hmac, pickle, xmlrpc, subprocess among others.

47

The kaneton microkernel :: development CHAPTER 5. TOOLS

Use

The client script enables the user to request one of the five operations described below.

$> make

[!] usage: client.py [command]

[!] commands:

[!] information

[!] submit-[stage]

[!] test-[environment]::[suite]

[!] list

[!] display-[identifier]

[!] retest-[identifier]

$>

The information operation requests the server to return information on the current state of the
user’s profile. The information returned range from the number of tests performed, the quota for
every test suite to the available stages or the snapshots having been previously submitted.

$> make information

[+] configuration:

[+] server: https://test.opaak.org:8421

[+] capability: /data/mycure/repositories/kaneton/environment/profile/user/julien.quintard/julien.quintard.cap

[+] platform: ibm-pc

[+] architecture: ia32/educational

[+] information:

[+] profile:

[+] identifier: contributor

[+] community: contributors

[+] members:

[+] name: admin

[+] email: admin@opaak.org

[+] suites:

[+] k1

[+] k3

[+] k2

[+] kaneton

[+] stages:

[+] k1

[+] k2

[+] k3

[+] environments:

[+] qemu

[+] xen

[+] database:

[+] reports:

[+] xen:

[+] ibm-pc.ia32/educational:

[+] k3:

[+] k2:

[+] k1:

[+] qemu:

[+] ibm-pc.ia32/educational:

[+] k3:

[+] k2:

[+] k1:

[+] settings:

[+] xen:

[+] ibm-pc.ia32/educational:

[+] k3:

[+] requests: 0

[+] quota: -1

48

The kaneton microkernel :: development 5.1. INTERNAL

[+] k2:

[+] requests: 0

[+] quota: -1

[+] k1:

[+] requests: 0

[+] quota: -1

[+] qemu:

[+] ibm-pc.ia32/educational:

[+] k3:

[+] requests: 0

[+] quota: -1

[+] k2:

[+] requests: 0

[+] quota: -1

[+] k1:

[+] requests: 0

[+] quota: -1

$>

The test command enables the user to trigger a test suite for the current kaneton implementation
on the specified environment such as QEMU or Xen for instance.

The server then returns the resulted report which the client stores locally in test/store/report/.
In addition, the client displays a quick summary of the report in order for the user to know whether
things went as expected.

$> make test-xen::k2

[+] configuration:

[+] server: https://test.opaak.org:8421

[+] capability: /data/mycure/repositories/kaneton/environment/profile/user/julien.quintard/julien.quintard.cap

[+] platform: ibm-pc

[+] architecture: ia32/educational

[+] report(20101103:140601):

[+] segment [1/1]

[+] id [3/3]

$>

The list command enables the user to display the identifiers of the reports in the local store.

$> make list

[+] reports:

[+] 20101103:140601:

[+] xen :: ibm-pc :: ia32/educational :: k2 :: 2010/11/03 14:06:01

The display command gives the user the possibility to dump a locally stored report in a very
detailed way.

$> make display-20101103:140601

[+] report:

[+] meta:

[+] platform: ibm-pc

[+] date: 2010/11/03 14:06:01

[+] architecture: ia32/educational

[+] duration: 63.499

[+] suite: k2

[+] identifier: 20101103:140601

[+] environments:

[+] stress: xen

[+] construct: xen

49

The kaneton microkernel :: development CHAPTER 5. TOOLS

[+] data:

[+] segment: [1/1]

[+] permissions/01:

[+] status: True

[+] description: This test creates a task and address space before reserving a seg-

ment and changing its permissions.

[+] duration: 0.010

[+] output:

[+] id: [3/3]

[+] simple:

[+] status: True

[+] description: This test reserves a single identifier.

[+] duration: 0.004

[+] output:

[+] clone:

[+] status: True

[+] description: This test reserves, clones and releases identifiers.

[+] duration: 0.005

[+] output:

[+] multiple:

[+] status: True

[+] description: This test reserves thousands of identifiers, checking that no col-

lisions occured.

[+] duration: 0.040

[+] output:

$>

The submit command sends the user’s snapshot to the server so as to be evaluated for the given
stage.

$> make submit-k1

[+] configuration:

[+] server: https://test.opaak.org:8421

[+] capability: /data/mycure/repositories/kaneton/environment/profile/user/julien.quintard/julien.quintard.cap

[+] platform: ibm-pc

[+] architecture: ia32/educational

[+] the snapshot has been submitted successfully

$>

Finally, the retest command provides contributors the possibility to re-launch the test suite
of the given identified test. This command is especially useful to re-test a snapshot should an
unexpected error occur on the test server.

Indeed since test requests are limited for students, it would be unfair for the student to be
forced to sacrifice a test slot because something went wrong on the server-side. By requesting a
contributor, the student’s snapshot can be re-tested. Once the test complete, an email is sent to
the student along with the attached report.

$> make retest-20101103:140601

[+] configuration:

[+] server: https://test.opaak.org:8421

[+] capability: /data/mycure/repositories/kaneton/environment/profile/user/julien.quintard/julien.quintard.cap

[+] platform: ibm-pc

[+] architecture: ia32/educational

[+] the snapshot has been re-tested successfully

$>

50

The kaneton microkernel :: development 5.1. INTERNAL

Robot

The robot test tool enables contributors to test the kaneton research implementation on a regular
basis; hence control the status of the development.

The robot basically retrieves the kaneton implementation by checking out the Subversion repos-
itory. Then, several test suites are triggered through the test client. Once the reports have been
received, a message is built summarizing the results. This message is then sent to the kaneton
contributors mailing-list.

The deployment of the robot is quite straigthforward. First, the test/robot/ directory must be
copied to the server. Note that the robot.py script depends upon the ktp package which must
therefore be copied as well.

Then, the SSH configuration file config must be placed in the $HOME/.ssh/ directory. Besides, this
file should be edited in order to properly reference the SSH keys since the default configuration
assumes the kaneton test directory to be located at /kaneton/.

Finally, the robot.cron crontab file must be setup through the following command in order to
trigger the robot every night:

$> crontab robot.cron

Once again, the administrator should make sure to edit this file should the robot files not be
located in the default location i.e. /kaneton/.

5.1.8 Prototypes

The tool/ directory contains a interesting tool developed by the kaneton community for gener-
ating C prototypes automatically.

This tool named mkp must not be used directly as the prototypes automatic generation can
be triggered from the Make files via the prototypes rule. This rule should be called everytime a
developer wants the prototypes to be correct, for instance, before starting a compiling process.

This tool was introduced to avoid spending time writing prototypes. Since, this utility generates
the prototypes automatically, developers should no longer write prototypes manually.

This script takes a list of C header files as arguments. These header files are supposed to contain
a prototypes section as illustrated below:

/*

* ------- prototypes -----------------------------------

*

* ../../core/set/set.c

* ../../core/set/set-array.c

* ../../core/set/set-ll.c

* ../../core/set/set-bpt.c

* ../../core/set/set-pipe.c

* ../../core/set/set-stack.c

*/

[...]

/*

* eop

*/

51

The kaneton microkernel :: development CHAPTER 5. TOOLS

The mkp tool then retrieve the list of the C source files listed in the prototypes section and
remove the text between the prototypes opening section and the eop tag.

Then, the script goes through each of the listed source files and tries to detect C function decla-
rations. For each function declaration found, the tool generates a prototype in the corresponding
header file.

Below is an example of a header file with such a prototypes section and generated prototypes.

/*

* ------- prototypes -----------------------------------

*

* ../../core/set/set.c

* ../../core/set/set-array.c

* ../../core/set/set-ll.c

* ../../core/set/set-bpt.c

* ../../core/set/set-pipe.c

* ../../core/set/set-stack.c

*/

/*

* ../../core/set/set.c

*/

t_error set_dump(void);

t_error set_size(i_set setid,

t_setsz* size);

t_error set_new(o_set* o);

t_error set_destroy(i_set setid);

t_error set_descriptor(i_set setid,

o_set** o);

t_error set_get(i_set setid,

t_id id,

void** o);

t_error set_init(void);

t_error set_clean(void);

/*

* ../../core/set/set-array.c

*/

t_error set_type_array(i_set setid);

t_error set_show_array(i_set setid);

t_error set_head_array(i_set setid,

t_iterator* iterator);

[...]

/*

* eop

*/

52

The kaneton microkernel :: development 5.1. INTERNAL

5.1.9 Control Panel

The kaneton environment allows the developer to trigger every action from the Make file of the
project’s root directory.

These actions are listed below:

make initialize

This action initializes the kaneton development environment by invoking the init.py

script of the environment/ directory.

make clean

This action cleans the kaneton development environment.

make main

This action triggers the default rule which aims at compiling every piece the final
system needs to be set up on a bootable device.

Example:
$ make main

Example:
$ make

make clear

This action removes every compiled files.

make headers

This action generates Make files’ C header files dependencies.

make prototypes

This action generates C prototypes.

make test

This action runs the test suite in order to validate the kaneton microkernel behaviour.

make cheat

53

The kaneton microkernel :: development CHAPTER 5. TOOLS

This action launches the cheat tests on students kaneton implementations.

Example:
$ make cheat

Example:
$ make cheat-EPITA::2006::k3

make build

This action builds the boot device.

make install

This action installs the kaneton microkernel with its dependencies: configuration files,
bootloader etc. on the boot device.

make export

This action builds a kaneton distribution package.

Example:
$ make export

Example:
$ make export-k3,5

Example:
$ make export-back

make view

This action builds and displays a kaneton document.

Example:
$ make view

Example:
$ make view-devel

Example:
$ make view-book::kaneton

make record

54

The kaneton microkernel :: development 5.2. EXTERNAL

This action records a real-time session.

Example:
$ make record

Example:
$ make record-basic::test.ts

make play

This action plays a recorded session.

Example:
$ make play

Example:
$ make play-basic::prototypes.ts

Example:
$ make play-prototy

make info

This action displays general information about kaneton.

5.2 External

The kaneton contributors use several other tools for the communication, the development etc.
These tools are described in the following sections.

5.2.1 Mailing-List

Because people do not want to use several communication tools: email, newsgroup, forum etc.
and because everybody has an email address, kaneton people communicate through a mailing-list.

The kaneton project relies on two distinct communication groups:

• contributors@kaneton.opaak.org is dedicated to the communication between the people involved
in both the development and teaching of the kaneton microkernel project.

This group is therefore private.

• students@kaneton.opaak.org can be used in an absolutely free-way by students for communi-
cating about their kaneton educational implementation.

Anybody can join this group.

55

The kaneton microkernel :: development CHAPTER 5. TOOLS

Needless to say, community rules discussed in Chapter 3 must be followed when communicating
on the kaneton mailing-lists. Every contributor is welcome to give her point of view, to ask
questions etc. but this must be done with politness, respect and humility.

Everyone communicating through the mailing-list must read the Netiquette which describes the
rules inherent to the communication on the Internet. Especially, people should take care of writing
messages in respect of the 80 columns; and should always cut off useless parts in previous messages
when responding.

It is likely that a real-time communication tool will be very useful in the future, an IRC channel
for instance. However, communicating on these extra media will not be mandatory unless kaneton
people decide so.

kaneton people are asked to use the mailing-list communication medium in a perfect way as it
is the unique intra-communication channel. In addition then, contributors must read their emails
on a regular-basis as some people rely on the decision of others.

The students mailing-list must be used carefully as well. As an example, people should never
paste pieces of source code or ask questions implying an answer with the solution. Even if it is a
free group, people abusing of this communication channel could be easily banned.

People must always respond in the appropriate discussion. If, in a discussion, a different subject
is discussed, then, one of the contributor must create a new discussion in order facilitate the
communication.

Finally, the discussion subjects must be tagged like the following examples:

[ia32/optimised] mapping issues

[segment] segment_clone() :: bug?

[research] new paper about OS design

There is no list of official tags. The users are simply asked to make their discussion subjects as
clear as possible.

5.2.2 Repository

The repository contains everything related to the kaneton microkernel project, in other words,
the kaneton source tree described in Chapter 2. Indeed, the repository contains the whole history
of the kaneton project including the documentation, the source code but also the students tarballs
over the years.

The actual repository is based on the Subversion software which provides far more advanced
features than its historical rival CVS.

The repository is actually hosted on the kaneton.opaak.org server which also contains the web
server and everything else related to the management of the kaneton microkernel project.

The repository is accessed in a secure way through a SSH channel. Indeed, the kaneton Subver-
sion repository can be accessed at the following address: svn+ssh://subversion@repositories.opaak.org/kaneton.

Note that the security is achieved by the use of SSH keys. Therefore, any new contributor
should get in touch with an administrator of the kaneton server in order to obtain an access. Also
note that, a test period could be set up for a new contributor to get the trust of the kaneton
community. For more information, please refer to Chapter 3.

56

The kaneton microkernel :: development 5.2. EXTERNAL

A contributor willing to create a SSH key shoud simply use this Unix command:

$> ssh-keygen -t dsa

For more information about how to use the repository, please refer to the official Subversion
documentation. The same goes for the SSH tools suite.

The example below illustrates the checkout of the kaneton repository.

$> svn checkout svn+ssh://subversion@repositories.opaak.org/kaneton

The contributors getting access to the kaneton repositories must behave properly according to
the obvious cooperative development rules. As an example, a kaneton developer must not perform
any commit before making sure the kaneton microkernel compiles and passes all the tests.

The repository organisation is crucial. Therefore, nothing should be added, removed or renamed
without the permission of the developers in charge of the repository.

Finally, any commit must come with a log describing the modifications implied by the commit.
These logs must conform to the following syntax.

[kaneton/core/segment/]

o the bug about the permissions was corrected in segment_clone().

o an algorithm based on a b-tree was added.

[environment/profile/user/julien.quintard/]

o some personal configurations were modified.

Following this syntax is very important as an email is sent to the kaneton-developers mailing-list
every time a commit is performed. Therefore, the contributors reading the mailing-list are aware
of every modification in the kaneton source code. This feature can also be used to review the
modifications done by a new contributor in order to help him doing things in a better way.

Note that there must not be any file with the executable flag permission enabled. Moreover,
scripts files must not contain any shebang. Indeed, the kaneton development environment knows
which interpreter to use for every type of file. It is therefore a non-sense to introduce a hard-coded
path to an interpreter.

Tarball file names must be extended with .tar while bzip2 compressed tarballs must be extended
with .tar.bz2.

5.2.3 Wiki

A Wiki is used both for external and internal communication. The software used is called TWiki
and provides a pretty simple syntax with many additional plugins to customize the website. This
solution was used for historical reasons but also because the TWiki rendering can be customized
through templates in order to get a final visual close to classical websites. Thus, the kaneton
website looks like an ordinary website but powered by a Wiki engine.

The Wiki is hosted at http://kaneton.opaak.org and contains two webs: an extranet and an
intranet. The main web, accessed through the address above is the external website. This website
contains news, papers, documentation and general information on the kaneton project. The other
web is used more as an intranet or wiki more than as a website.

57

The kaneton microkernel :: development CHAPTER 5. TOOLS

Finally, http://wiki.opaak.org is intended to students and contains documents, links etc. about
low-level programming, kernel development etc. as well as information about courses related to
the opaak projects.

Everybody involved in the kaneton project must contribute to the kaneton website as well as
to the kaneton intranet and wiki. Indeed, the external communication is fundamental, even in an
open source project and the kaneton website is the only public communication medium.

New contributors are then asked to register onto the kaneton TWiki at http://kaneton.opaak.org.
Once done, the contributor should inform the person in charge of the kaneton website so that the
contributor’s account is activated. As a result, the contributor will be able to modify pages of the
website and intranets.

5.2.4 Project Management

It is very important to really well understand that kaneton is a community-driven project. Hence,
people cannot expect to always do what they would like to as many things need to be done, fixed
or whatever.

Additionally, as the project grows, it needs to be more carefully managed so that bugs are fixed,
boring tasks are done etc.

A project management tool is provided in order to better manage tasks according to their
priorities. Trac was picked for this purpose as it was probably, at that time, the best choice.

The project management tool is running on the kaneton.opaak.org server and authentication is
based on the Wiki.

Always remember that, although Trac provides a Wiki as well, the kaneton.opaak.org Developers
Intranet must be used instead.

58

Chapter 6
Languages

This chapter focuses on the languages in the context of the kaneton microkernel project. In-
deed, many different languages are used for the microkernel itself, but also for the scripts and
documentations around the project.

59

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

6.1 Make

The coding style related to Make files is very simple.

6.1.1 Naming

First, Make files must be named Makefile, with the first letter in upper case letter.

Rules must be named with a single word in lower-case letters while variables must be named in
upper-case letters.

6.1.2 Environment

Every Make file must rely on the development environment as it provides a way for performing
operations in a very simple and portable way.

Therefore, each Make file must start by including the configured Make environment file located
in the environment/ directory under the name: env.mk.

Note that the configured environment Make file provides a hidden rule named _. This rule name
is therefore reserved. This rule is triggered every time a Make file is called without specifying a
rule name. This rule aims at verifying the configured environment is up-to-date. If not, the rule
regenerates it. Finally, this rule calls the main rule to perform the main work of the Make file.

Therefore, every Make file has to provide a main rule.

6.1.3 Layout

Make files must be organised as sections.

• header: this section contains the file header which provides information on the file edition:
creation, last update etc.

• dependencies: this section contains the include directives.

#

------- dependencies -------------------------------

#

include ../../environment/env.mk

[...]

#

------- dependencies -------------------------------

#

-include ./$(_DEPENDENCY_MK_)

• directives: this section contains Make directives like .PHONY, .SUFFIXES etc.

60

The kaneton microkernel :: development 6.1. MAKE

#

------- directives ---------------------------------

#

.PHONY: clear prototypes headers dependencies

• variables: this section contains the variable definitions.

#

------- variables ---------------------------------

#

SUBDIRS := arch \

kernel \

as \

conf \

id \

region \

segment \

debug \

map

CORE_INCLUDE := $(_CORE_INCLUDE_DIR_)/core.h

CORE_C := core.c

CORE_O := $(CORE_C:.c=.o)

• rules: this section contains the Make rules.

#

------- rules ------------------------------------

#

$(LIBSTRING_LO): $(LIBSTRING_O)

$(call env_remove,$(LIBSTRING_LO),)

$(call env_archive,$(LIBSTRING_LO),$(LIBSTRING_O),)

clear:

$(call env_remove,$(LIBSTRING_O),)

$(call env_remove,$(LIBSTRING_LO),)

$(call env_purge,)

prototypes:

$(call env_prototypes,$(LIBSTRING_INCLUDE),)

headers:

$(call env_remove,$(_DEPENDENCY_MK_),)

$(call env_headers,$(LIBSTRING_C),)

6.1.4 Style

Recall that the kaneton development environment provides a Make interface allowing Make files
to perform operations in a portable way. Thus, Make files must not contain any operations specific
to any operating system.

61

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

As such, every operation should be a call to one of the Make functions provided by the kaneton
development environment interface.

Any contributor writing a Make file should take care of properly cleaning the directory from
temporary files. Indeed, every Make file provides a clear rule which is intended to remove these
temporary files. Therefore, every developer should take care of that and verify every file was
cleaned before committing.

The kaneton project provides a tool for generating C prototypes through a Make rule called
prototypes. Therefore, the Make file must carefully use this rule to trigger the generation of
prototypes in the right header files. For more information about the prototypes generation, please
refer to Section 5.1.8.

One of the other important rules is called headers and generated a file containing all the header
file dependencies related to a set of C source files. This generated file must be included in the
Make so that it can use it. A Make file inclusion is present at the end of many Make files for this
purpose:

#

------- dependencies ----------------------------------

#

-include ./$(_DEPENDENCY_MK_)

Additionally, Make files must resolve dependencies before performing any other task. Therefore,
the rule name dependencies is reserved for this purpose by launching every Make file in charge of
one of the dependency.

Finally, recall that a main rule must be provided by every Make file since this rule is called
everytime the Make file is launch without rule name argument.

6.2 Python

The Python language is the other language for which the kaneton development environment
provides an interface for performing task in a portable way.

Historically, kaneton scripts were written in Shell but scripts are pretty hard to write, especially
when dealing with file modification. Even if sed, awk etc. tools are very powerful, this is not a
good solution for many reasons. Therefore, the scripts were re-written in Python whilst a Python
development environment interface was written.

6.2.1 Naming

File names but also function names must be expressed in lower-case letters and a dash must be
used for composite names.

Comments must also be written in lower-case letters.

Global variable names, which are often used in Python, must be prefixed by g_.

As usual, names must be expressed in a single word as long as this is possible. Moreover, the
shortcut prefixes and suffixes recommended for the C language also stand for Python. For more
information, take a look at the Section 6.4.

62

The kaneton microkernel :: development 6.2. PYTHON

6.2.2 Environment

Every Python file must rely on the development environment as it provides a way for performing
operations in a very simple and portable way.

Therefore, each Python must start by including the configured Python environment module
located in the environment/ directory under the name: env.py.

Also, since operations are provided by the development environment, note that Python scripts
must not perform operations relying on the sys and/or os modules. Others modules like re, yaml

etc. are allowed. Moreover, the sys module is sometimes used - badly. If you do not know whether
the usage of a module is allowed, please ask your supervisor or directly the kaneton community
through the mailing-list for instance.

6.2.3 Layout

The Python files must be divided into sections. Below are listed the most common sections
developers should use.

• header: this section contains the well-known informations about the file: dates, author,
license etc.

• information: this section describes what the Pyhton do or provide if it is a package.

• imports: this section contains the module imports.

#

------- imports -----------------------------------

#

import env

import sys

import re

• globals: this section contains the global variable declarations.

#

------- globals -----------------------------------

#

g_directories = (‘book’,

‘curriculum’,

‘exam’,

‘feedback’,

‘internship’,

‘lecture’,

‘paper’)

g_store = []

g_document = None

g_path = None

• functions: this section contains the actual Python functions.

• entry point: this section contains the real entry point.

This section was introduced in order to localise the script’s entry point more easily. Note
that this section is generally located at the end of the script.

63

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

#

------- entry point --------------------------------

#

if __name__ == ‘__main__’:

main()

6.2.4 Style

Every function must be preceded by a comment. This comment plays the role of visual separator
but it also describes what the function does.

This comment first contains the name of the function with two parentheses. Then follows an
empty comment line and the function description.

#

usage()

#

this function prints the documents names.

#

def usage():

location = None

store = None

env.display(env.HEADER_ERROR, ‘usage: view.py [document]’,

env.OPTION_NONE)

env.display(env.HEADER_NONE, ‘’, env.OPTION_NONE)

env.display(env.HEADER_ERROR, ‘documents:’, env.OPTION_NONE)

for store in g_store:

for location in store:

env.display(env.HEADER_ERROR, ‘ ’ + location, env.OPTION_NONE)

The identation used in Python script must be fixed at 2 whitespaces. This is a common kaneton
rule which allows files to be readable while respecting the limitation about the 80 characters in
width.

Finally, note, that in Python, variables do not need to be declared before being actually used.
However, kaneton people believe this lead to unreadable code as well as to common hard-to-find
bugs. For this reason, every variable must be declared at the beginning of the function. Finally,
these variable should also be initialized.

6.3 Assembly

The Assembly language is used in kaneton to perform tasks which cannot be done in C. Therefore,
the amount of Assembly code is relatively small compared to the C one.

6.3.1 Inline Assembly

First of all, inline Assembly is recommended as it avoids multiple files and calls to Assembly
routines.

64

The kaneton microkernel :: development 6.3. ASSEMBLY

Inline Assembly code must be composed of lines with single instructions. Lines must be ended
by a newline character \n and aligned to make the code readable even when nested in the body of
a macro or macro function.

#define EXCEPTION_PREHANDLER_CODE(nr) \

asm(‘.globl prehandler_exception’ #nr ‘ \n’ \

‘prehandler_exception’ #nr ‘: \n’ \

SAVE_CONTEXT() \

‘iret ’)

Note that rules implied by the C language must be respected when dealing with inline Assembly
as these pieces of code are integrated in C functions.

6.3.2 Naming

Bunches of coherent routines must be preceded by a comment, starting with the name of the
routine in upper case letters, and followed by a description of the routines, in lower-case letters.

6.3.3 Layout

An Assembly file must be composed of sections:

• header: this section contains the file header which provides information on the file edition:
creation, last update etc.

• information: this section describes what the file is intended to do or provide.

• routines: this section contains the Assembly routines.

• data: this section contains the data definitions.

Below is an example:

;

; ------- information -----------------------------------

;

; this is a example, no additional information is required.

;

;

; ------- routines -------------------------------------

;

;

; PRINT STRING

;

; these routines print a string.

;

print_string:

mov ah, 0x0e ; the function to call with int 0x10

mov bx, 0x07 ; the console attributes

print_string_loop:

lodsb ; load a character from esi into al

cmp al, 0 ; is the string finished?

65

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

je print_string_done ; if true jump to the end

int 0x10 ; ask the BIOS to perform the task

jmp print_string ; loop for the next character

print_string_done:

ret ; return ’cause the string is now displayed

;

; MAIN

;

; the main routine.

;

main:

mov [bootdrive], dl ; save the bootdrive identifier

xor ax, ax ; initialize ax

mov ds, ax ; initialize ds

cli

mov ss, ax ; initialize ss

mov sp, 0xffff ; initialize the stack pointer

sti

mov si, newline

call print_string

mov si, rmode_message

call print_string

call floppy_read ; read the ELF from the floppy

call pmode_enable ; enable the protected mode

; once the protected mode is enabled

; the function pmode_main will be launched

;

; ------- data ---------------------------------------

;

newline db 10, 0

rmode_message db ’[+] real mode’, 13, 10, 0

bootdrive db 0

6.4 C

This section is intended to detail the kaneton C coding style. The specifications in this document
are to be well-known by every kaneton developer.

The kaneton coding style was introduced in order to uniformize the C coding styles of kaneton
project contributors. Indeed, as explained in this section, the kaneton coding style is very different
from the coding styles of other open source projects especially the GNU style.

The key aspect of the coding style is the clarity through the coherency. Indeed, every choice
was made for the good of the project so that everyone can very easily read the source code of the
kaneton microkernel.

66

The kaneton microkernel :: development 6.4. C

6.4.1 Naming

Names in kaneton must comply to the following rules.

General

Entities generally belong to a higher component: manager, module, package etc. Since the C
language does not provide any namespace feature, the programmer must rigorously name entities
by prefixing them with the name of the higher components.

Composite names must be separated by underscores: _.

Moreover, entities including variables, functions, macros, types etc. must have explicit and/or
mnemonic names.

#define IA32_OPTION_READ 1

#define SET_TYPE_ARRAY 0x02

#define MIPS64_THREAD_STACKSZ 8192

Obviously, names can be abbreviated, but only when it allows shorter code without a loss of
meaning. The following rules must be used in this way:

• The suffix sz must be used to represent a size:

#define PAGESZ 4096

int modsz;

• The s suffix must be used for representing mutiple entities:

int threads;

t_uint64 sets;

• The n prefix must be used for variables representing a number:

int ntasks;

More generally, entities must be named with a unique word, excluding the namespace prefix.
Short less explicit names are always prefered on very long explicit names which are then difficult
to name and use.

The following example illustrates a wrong usage of names in kaneton:

t_errval segment_dump_set(i_set segment_set,

t_uint32 number_of_segmens);

In this example, many entities are badly named and should be replaced by something similar to
the following:

67

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

t_error segment_dump(i_set segments,

t_uint32 nsegments);

Indeed, types are used as pre-names. Therefore, the entity name should not overlap the type
name. For example, the following example is incorrect:

t_vaddr video_addr;

i_event eventid;

Developers should prefer simpler names:

t_vaddr video;

i_event id;

These rules must be respected, especially in the case of functions belonging to an interface.
Indeed, since interfaces are presented to the user, they must be easy to use and self-described.
Therefore, functions as well as arguments must be very clearly named, using a single word.

Finally, names must be expressed in English, without spelling mistakes.

Capitalization

Entities including variables, functions, types, structures, enumerations, unions etc. must be
expressed using lower-case letters, digits and underscores only. More precisely, entity names must
be matched by the following regular expression:

[a-z][a-z0-9_]*

This is the common rule. However, some exceptions exist.

Macro names must be entirely capitalized except for macros which create an abstraction as it
is the case for the set manager interface. Macro arguments, must be prefixed and suffixed by an
underscore so that naming collision is avoided.

Note that the kaneton coding style names function arguments as arguments and macro argu-
ments as parameters as these latter ones are statically computed.

#define SCHEDULER_STATE_RUN 0

#define SEGMENT_BPT_NODESZ 4096

#define set_reserve(_type_, _args_...) \

set_reserve_##_type_(_args_)

Comments must be written in lower-case letters. Indeed, no capitalization must be used, at all.

/*

* this function shows a segment.

*

* steps:

*

68

The kaneton microkernel :: development 6.4. C

* 1) get the segment object.

* 2) compute the type string.

* 3) compute the perms string.

* 4) display the entry.

* 5) call machine dependent code.

*/

t_error segment_show(i_segment id)

{

[...]

}

Types

Type names are classified according to the group they belong to.

Firstly, structures, unions and enumerations must not be directly used. Instead, a type must be
defined. In order to indicate the entity class a type represents, prefixes are used.

Note that the core elements do not need prefixing since considered as the most fondamental
elements of the kaneton microkernel. However, several element markers are used to distinguish
the different kaneton types:

• Managers are prefixed by m_.

• Identifiers are prefixed by i_.

• Object types are prefixed by o_;

• Dispatch tables are prefixed by d_;

Then, the other components must rely on namespace prefixes in order to avoid conflicts:

• The glue component’s types are prefixed by g_;

• The platform-dependent component’s types are prefixed by p_;

• The architecture-dependent component’s types are prefixed by a_;

• The module-dependent component’s types are prefixed by m_;

• The library-dependent component’s types are prefixed by l_;

Finally, should none of the above definitions match the defined type, the general purpose types
listed below can be used:

• Function pointers are prefixed by f_;

• Structures are prefixed by s_;

• Enumerations are prefixed by e_;

• Unions are prefixed by u_;

• General purpose aliased-types are prefixed by t_.

69

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

Note that prefixes can be combined in several ways. For instance, the prefix ao_ represents an
architecture-dependent object while the lt_ represents a library type.

The example below illustrates this rule:

typedef void (*mf_console_character)(char);

typedef void (*mf_console_attribute)(t_uint8);

typedef struct

{

mf_console_character character;

mf_console_attribute attribute;

} mm_console;

The use of C standard types like int, long long is prohibited since there exist kaneton-specific
types t_uint32, t_uint64 which provide a size guarantee.

6.4.2 Layout

The global layout of files and sections of code pertaining to the C preprocessor, including file
inclusion and inclusion protection, must comply to specifications detailed in the following.

Note that an Emacs configuration file is provided in the developers’ private Wiki. This file con-
tains bindkeys for generating many of the syntaxes explained in this section. If some contributors
are using a different text editor, then it is their responsibility to follow the rules by developing a
plugin for their text editor, for instance.

File

C source and header files are composed of sections. The example below illustrates these sections:

/*

* ----- dependencies -----------------------------------

*/

#include <core/id.h>

#include <core/types.h>

/*

* ----- macros ---------------------------------------

*/

/*

* types

*/

#define SET_TYPE_ARRAY 0x01

#define SET_TYPE_BPT 0x02

#define SET_TYPE_LL 0x03

#define SET_TYPE_PIPE 0x04

#define SET_TYPE_STACK 0x05

/*

* iterator’s state

*/

#define ITERATOR_STATE_USED 0x01

#define ITERATOR_STATE_UNUSED 0x02

70

The kaneton microkernel :: development 6.4. C

Next are listed some of the most important sections:

• header: this section contains the file header which provides information on the file edition:
creation, last update etc.

Note that the first and last authors are also specified in this header. Remember that kaneton
is a community driven project and therefore these names do not represent the main file’s
authors.

This section must be present in every source and header file as it contains the file creation
and last updates.

• information: this section contains a general description of what this file provides.

This section must be present in every source file.

/*

* ------- information -------------------------------

*

* the address space manager manages address spaces.

*

* an address space describes process’ useable memory. each address space

* is composed of two sets.

*

* the first describes the segments held by this address space, in other

* words the physical memory.

*

* the latter describes the regions, the virtual areas which reference

* some segments.

*

* a task can give its address space to another with as_give().

*/

• dependencies: this section contains inclusions of dependency files.

This is the common section which contains the well-known #include preprocessor directives.

• includes: this section contains inclusion statements of additional files.

This section must not be misused since there also exist a dependencies section.

/*

* ------- dependencies -------------------------------

*/

#include <core/id.h>

#include <core/types.h>

/*

* ------- includes ---------------------------------

*/

#include <core/set-array.h>

#include <core/set-bpt.h>

#include <core/set-ll.h>

• macros: this section contains macro definitions.

This section must not contain macro functions as there is a section dedicated to these.

71

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

• macro functions: this section contains the macro function definitions which are dissociated
from the basic macro definitions.

/*

* ------- macros -----------------------------------

*/

/*

* options

*/

#define SET_OPT_NONE 0x00

#define SET_OPT_FORWARD 0x01

#define SET_OPT_BACKWARD 0x02

#define SET_OPT_CONTAINER 0x04

#define SET_OPT_ALLOC 0x08

#define SET_OPT_FREE 0x10

#define SET_OPT_SORT 0x20

#define SET_OPT_ORGANISE 0x40

/*

* ------- macro functions -----------------------------

*/

#define set_type(_type_, _id_) \

set_type_##_type_(_id_)

#define set_reserve(_type_, _args_...) \

set_reserve_##_type_(_args_)

• types: this section contains de type definitions.

• prototypes: this section contains the prototype definititions.

This section is specific as the kaneton microkernel project uses a tool for generating proto-
types from C source file. For more information, please refer to Section 5.1.8.

/*

* ------- prototypes --------------------------------

*

* ../../core/set/set.c

* ../../core/set/set-array.c

* ../../core/set/set-ll.c

* ../../core/set/set-bpt.c

* ../../core/set/set-pipe.c

* ../../core/set/set-stack.c

*/

/*

* ../../core/set/set.c

*/

t_error set_dump(void);

t_error set_size(i_set id,

t_setsz* size);

• externs: this section contains external declarations.

/*

* ------- extern -----------------------------------

*/

72

The kaneton microkernel :: development 6.4. C

/*

* the init variable, filled by the bootloader, containing in this case

* the list of segments to mark used.

*/

extern t_init* init;

• globals: this section contains global variable declarations.

/*

* ------- globals ----------------------------------

*/

/*

* the segment manager structure.

*/

m_segment* segment;

• functions: this section contains function definitions.

More specifically, C header files are likely to contain the sections: header, dependencies, macros,
types, includes, macro functions, prototypes etc. while the C source files should contain the
sections: header, information, includes, externs, globals, functions etc.

The header section is basically the file header which was described in Chapter 4.

Preprocessor

The preprocessor directives must appear on the first column with no identation:

#ifndef CORE_SET_H

#define CORE_SET_H 1

/*

* debug

*/

#if (DEBUG & DEBUG_SET) && defined(SET_DEBUG_TRAP)

#define set_debug(_func_, _id_, _args_...) \

fprintf(stderr, ’[setd] trap: %s(%qu, %s)\n’, \

#_func_, \

id, \

#_args_);

#else

#define set_debug(_func_, _id_, _args...)

#endif

#endif

All header files must be protected against multiple inclusions. The guard macro must be named
according to the location of the header file with the suffix _H in order to avoid guard macro name
collision.

73

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

#ifndef ARCHITECTURE_IA32_SEGMENT_H

#define ARCHITECTURE_IA32_SEGMENT_H 1

[...]

#endif

Spanning macros over multiple lines is encouraged for the sake of clarity. In such cases, escaped
line breaks \-newline must appear on the same column. For this purpose, tabulations must be
used.

Moreover, the body of macro functions must start on a new line, idented by 2 whitespaces.

/*

* traps

*/

#define set_trap(_func_, _id_, _args_...) \

(\

{ \

t_error _r_ = ERROR_UNKNOWN; \

o_set* _set_; \

\

set_debug(_func_, _id_, _args_); \

\

if (set_descriptor((_id_), &_set_) == ERROR_NONE) \

{ \

switch (_set_->type) \

{ \

case SET_TYPE_ARRAY: \

r = _func_##_array((_id_), ##_args_); \

break; \

case SET_TYPE_BPT: \

r = _func_##_bpt((_id_), ##_args_); \

break; \

case SET_TYPE_LL: \

r = _func_##_ll((_id_), ##_args_); \

break; \

case SET_TYPE_PIPE: \

r = _func_##_pipe((_id_), ##_args_); \

break; \

case SET_TYPE_STACK: \

r = _func_##_stack((_id_), ##_args_); \

break; \

} \

} \

r; \

} \

)

Functions

Every function must be preceded by a comment which completely describes the actions the
function performs. Moreover, some function parts need additional descriptions. In order not to
overload the function body with heavy comments, a kaneton-specific function organisation was
introduced.

Indeed, functions body are composed of steps, each step representing a bunch of coherent
actions. These actions are not described in the body of the function, but rather in the comment
preceding the function. Thus, the body is clearly decomposed into steps for the sake of clarity
while expressiveness is guaranted by heavy documentation contained in the function comment.

74

The kaneton microkernel :: development 6.4. C

Therefore, function definitions must comply the organisation illustrated below:

/*

* this function adds a set descriptor to the set container.

*

* steps:

*

* 1) if the descriptor to add is the set which will contain the set objects,

* the container, just put it as the set container.

* 2) otherwise, add this object in the set container.

*/

t_error set_new(o_set* o)

{

SET_ENTER(set);

/*

* 1)

*/

if (o->setid == set->sets)

{

if ((set->container = malloc(sizeof(o_set))) == NULL)

SET_LEAVE(set, ERROR_UNKNOWN);

memcpy(set->container, o, sizeof(o_set));

SET_LEAVE(set, ERROR_NONE);

}

/*

* 2)

*/

if (set_add(set->sets, o) != ERROR_NONE)

{

cons_msg(’!’, ’set: unable to add this set descriptor ’

’to the set container\n’);

SET_LEAVE(set, ERROR_UNKNOWN);

}

SET_LEAVE(set, ERROR_NONE);

}

Note that a single blank line must be put for separating pieces of code as it leads to a more
readable source code. Moreover, a blank line must be put before and after each step comment in
the function’s body.

Note that comments must comply to the template exposed above. The following are examples
of bad comments:

/*

** bad comment

*/

/* Bad Comment

*/

/* bad comment */

// bad comment

75

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

6.4.3 Style

The following sections specify various aspects of what constitutes good programming behaviour
at the language level. They cover various aspects of the C constructs.

Blocks

All braces must be on their own line. This rule implies a programming style very different from
the BSD or GNU coding styles which put the open brace at the end of the line.

if (option & OPTION_OPTIMISED)

{

[...]

}

In addition, closing braces must appear on the same column as the corresponding opening brace.

The text between two braces must be indented by a fixed, homogeneous amount of whitespaces.
This amount is fixed to 2 whitespaces. Note that the Emacs default identation comply to this
rule.

Moreover, the braces must also be indented by the amount of 2 spaces from the previous line.
However, some exceptions exist, especially with nested block declarations.

In C functions, the declaration part must be separated from statements with a single blank line.
Note that when there are no declarations, there must not be any blank line separator.

Blocks are generally composed of bunches of statements and expressions. Every developer is
welcomed to put a single blank line in order to clearly separate bunches of pieces of code.

t_error set_get(i_set setid,

t_id id,

void** o)

{

t_iterator iterator;

SET_ENTER(set);

if (set_locate(setid, id, &iterator) != ERROR_NONE)

SET_LEAVE(set, ERROR_UNKNOWN);

if (set_object(setid, iterator, o) != ERROR_NONE)

SET_LEAVE(set, ERROR_UNKNOWN);

SET_LEAVE(set, ERROR_NONE);

}

Alignment

Declaration identifiers must be aligned with the function name, using tabulations only. Moreover,
the declarations must be ordered according to the length of the identifier, starting with the longer,
as shown below.

t_error segment_dump(void)

{

76

The kaneton microkernel :: development 6.4. C

t_state state;

t_setsz size;

t_iterator i;

[...]

}

In C, pointerness is not part of the type. However, in the kaneton coding style, the * pointer
symbol in declarations must appear next to the type.

Function argument lists must be broken between each argument, after the comma. In addition,
the argument identifiers must be properly aligned together, with tabulations.

t_error as_give(i_task tskid,

i_as asid)

{

o_task* from;

o_task* to;

o_as* o;

[...]

}

Structures and union fields must be aligned with the type name, using tabulations. In addition,
when declaring a structure or union type, there must be only one field declaration per line.

typedef struct

{

i_event eventid;

t_type type;

u_event_handler handler;

} o_event;

Enumerations values must be capitalized and must appear on their own line.

When an expression, declaration, assignment etc. spans over multiple lines, the additional lines
must be indented according to the type of statement. It is indeed the responsibility of the developer
to align these lines properly. Note that Emacs’s alignment comply to many of the kaneton rules.

int x = y * foo(z + pow(z, 3)) +

a_very_very_long_function_name(y, z) + bar(baz(42, 21), y * z);

Declarations

There must be only one declaration per line.

External declarations must not be located in functions blocks but rather in the global scope.

Variables may be initialized at the point of declaration. This way, bugs detection could be
improved. For this purpose, however, valid expressions are only those composed of constants and
macros.

Below are illustrated some very bad constructs:

77

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

t_error task_current(i_task* tsk)

{

i_thread current, next;

o_thread* o = thread_get(current);

extern int sched;

[...]

}

Variables must always be declared at the beginning of a block.

Statements

A single line must not contain more than one statement. In addition, commas must not be used
on a line to separate statements.

The comma must be followed by a single space, except when they separate arguments in functions
or macro functions declarations and calls, and the argument list spans multiple lines.

The semicolon must be followed by a newline and must not be preceded by a whitespace, except
if alone on its line.

{

int i;

for (i = 0; i < 256; i++)

;

[...]

obscure_example(id, as);

[...]

}

There exist exception to the above rules. For more information, please refer to the subsection
about Control Structures.

Statement keywords must be followed by a single whitespace, except those without arguments.
This especially implies the return without argument, like continue and break, must not be separated
from the following semicolon.

Statement keywords which take an argument must enclose the argument between parentheses,
as illustrated next.

{

i_timer id;

while (1)

{

if (id != ID_UNUSED)

continue;

[...]

return (0);

}

}

Finally, the use of the goto statement must be extremely limited.

78

The kaneton microkernel :: development 6.4. C

Expressions

All binary and ternary operators must be padded on the left and right by one space, including
assignment operators.

Prefix and suffix operators must not be padded neither on the left nor on the right.

When necessary, padding is always done with a single whitespace.

The . and -> operators must no be padded.

Below is an example illustrating these rules.

{

int* p;

x = 10 * *p + reference->value++;

x += ((*reference).tag == 1 ? 10 : 0);

}

There must not be any whitespaces between the function name and the opening parenthesis in
function calls.

Expressions may span over multiple lines. When a line break occurs within an expression, it
must appear just after a binary operator, in which case the binary operator must not be padded
on the right by a whitespace.

6.4.4 Control Structures

General

Control structure keywords must be followed by a whitespace. The conditional parts of algo-
rithmic constructs - if, while, do, for, else - must be alone on their line.

The following constructs are incorrect:

{

if(option & OPTION_SET)

return 0;

while (str[i]) write(1, str[i++], 1)

if (id != ID_UNUSED) {

foo();

} else {

bar();

}

do {

++x;

} while (x < 10);

}

The following must be prefered:

79

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

{

if (option & OPTION_SET)

return (0);

while (str[i])

write(1, str[i++], 1)

if (id != ID_UNUSED)

{

foo();

}

else

{

bar();

}

do

{

++x;

} while (x < 10);

}

Finally, the conditional control structures must always use a full comparison and avoid the use
of the logical not operator: !

For instance, the following construct is very wrong:

if (!(kernel_buffer = malloc(size)))

MESSAGE_LEAVE(message, ERROR_UNKNOWN);

Indeed, this construct supposes the malloc() function returns 0 when it fails. However, the
malloc() function returns NULL when it fails and no specification actually indicates what is the value
of the NULL macro. Many programmers consider this macro is always equivalent to the zero integer
value but this is not true.

Therefore, kaneton developers must use comparison operators to avoid such issues. In addition,
using comparison operators makes the code much more simple to read and understand:

if ((kernel_buffer = malloc(size)) == NULL)

MESSAGE_LEAVE(message, ERROR_UNKNOWN);

for

As a general exception, the for construct breaks many of the previously defined rules.

Multiple statements may appear in the initial and iteration part of the for structure. For this
effect, commas must be used to separate statements.

The three part of the for construct may span over multiple lines. The while construct must be
prefered to a for construct with three empty parts.

The following examples are very wrong:

{

int i;

for (i = 0, int j = 1;

j = j + 2, i < 10;

80

The kaneton microkernel :: development 6.4. C

i++)

;

for (;;) ;

}

Instead, prefer:

{

int i;

int j;

for (i = 0, j = 1, j = j + 2;

i < 10;

j = j + 2, i++)

;

for (; 1;)

;

}

Finally, single-line loops - for and while - must have their terminating semicolon on the following
line, as illustrated above.

6.4.5 kaneton

The following rules apply specifically to the source code of the microkernel itself.

In kaneton, function declarations follow the same template. Indeed, the return value must always
indicate whether the function call successed or not. The return type is therefore always the same:
t_error.

Function arguments must be ordered, starting with input argument and finishing with ouput
arguments. Moreover, the first argument must be the more important i.e. the kaneton object
identifier or capability on which the action is performed.

t_error task_reserve(t_class class,

t_behav behav,

t_prior prior,

i_task* id);

In this example, class, behav and prior are input arguments. The function creates a new task
object and returns the identifier of this new task into the id output argument, which is the last of
the list.

Especially note that kaneton does not have any function returning a value. The return value is
always used as an error status, thus leading to a more uniform and coherent programming style.

Functions located in a kaneton manager must start with a call to the ENTER() macro function and
finish with a call to the LEAVE() macro function. These macro functions were introduced in order
to facilitate the process of adding a statement at the beginning and/or at the end of a function.
Especially, the return keyword should no longer be used.

Below is an example of such calls:

81

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

/*

* this function releases a thread from a given task.

*

* steps:

*

* 1) call the machine-dependent code.

* 2) get the thread object.

* 3) get the task object.

* 4) release the thread stack if needed.

* 5) release the thread-s object identifer.

* 6) remove the thread from the task threads list.

* 7) remove the thread from the threads set.

*/

t_error thread_release(i_thread threadid)

{

o_task* task;

o_thread* o;

THREAD_ENTER(thread);

/*

* 1)

*/

if (machine_call(thread, thread_release, threadid) != ERROR_NONE)

THREAD_LEAVE(thread, ERROR_UNKNOWN);

/*

* 2)

*/

if (thread_get(threadid, &o) != ERROR_NONE)

THREAD_LEAVE(thread, ERROR_UNKNOWN);

/*

* 3)

*/

if (task_get(o->taskid, &task) != ERROR_NONE)

THREAD_LEAVE(thread, ERROR_UNKNOWN);

/*

* 4)

*/

if (o->stack)

{

if (map_release(task->asid, o->stack) != ERROR_NONE)

THREAD_LEAVE(thread, ERROR_UNKNOWN);

}

/*

* 5)

*/

if (id_release(&thread->id, o->threadid) != ERROR_NONE)

THREAD_LEAVE(thread, ERROR_UNKNOWN);

/*

* 6)

*/

if (set_remove(task->threads, threadid) != ERROR_NONE)

THREAD_LEAVE(thread, ERROR_UNKNOWN);

/*

82

The kaneton microkernel :: development 6.5. LATEX

* 7)

*/

if (set_remove(thread->threads, threadid) != ERROR_NONE)

THREAD_LEAVE(thread, ERROR_UNKNOWN);

THREAD_LEAVE(thread, ERROR_NONE);

}

In this example, the types of error are not distinguished as the function always returns ER-

ROR_UNKNOWN which is not a very good idea.

6.5 LATEX

The kaneton documents are written in the LATEX language. These documents are viewable
through the view tool. For more information about this tool, please refer to the Section 5.1.3.

6.5.1 Naming

LATEX files must be named in lower-case letters. Moreover, composite file names must be sepa-
rated by a dash -.

6.5.2 Layout

Since LATEX is not a very readable language, every contributor is asked to follow the rules
described in order to make the documents internal representation looks like the resulted output.

Indeed, writers are asked not to use LATEX commands specifying layout requirements especially
about indentation like \paragraph, \vspace etc. Since the kaneton project provides templates, every
kaneton document must rely on a template which specifies the paragraph indentation, paragraph
space etc.

Thus, the writer willing to distinguish two paragraphs in his document should simply put a
single blank line between to two texts in his LATEX file as shown below:

This is a paragraph which is intended to explain nothing special but

how to construct paragraphs in a very simple and readable way.

Then, after a single blank line, this text will be considered as a new

paragraph.

This rule aims at making the document code as readable as possible. However, if a vertical
space is needed in some place the default paragraph indentation does not apply, then, the \-
LATEX command must be used. This is especially useful in lecture documents.

The example below illustrates such a lecture document and the need of vertical indentation:

\begin{frame}

\frametitle{Description}

The MIPS processor is a 32-bit little-endian processor.

83

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

\-

This processor provides \textbf{32 integer registers}, from R0 to R31.

[...]

Obvisouly, lines must not exceed 80 characters in width.

The templates provided by kaneton are located in the view/template/ directory. Those include
book, paper, exam etc.

Therefore, every document should start by including the template file. However, since the tem-
plate files need to access other files like LATEX dependency files, additional packages etc. these
templates need to know where the document directory is located from the root view/ directory. Ev-
ery document must therefore specify the path to the view/ directory before including the template
file.

Every file should then start with a setup section similar to the following:

%

% ------- setup ---------------------------------------

%

%

% path

%

\def\path{../..}

%

% template

%

\input{\path/template/book.tex}

As every other type of kaneton file, the LATEX files are composed of sections. Below are listed
some of possible sections but note that it highly depends on the organisation of the document:
multiple files, etc. as well as the type of document: presentation slides, paper, book etc.

The best way to make things properly is to look at the existing documents.

• header: this section contains the file header which provides information on the file edition:
creation, last update etc.

• setup: this section contains the LATEX setup: path to the view/ directory, template including,
title definition etc.

%

% ------- setup ------------------------------------

%

%

% path

%

\def\path{../..}

%

% template

%

84

The kaneton microkernel :: development 6.5. LATEX

\input{\path/template/book.tex}

%

% header

%

\lhead{\scriptsize{The kaneton microkernel :: development}}

%

% title

%

\title{The kaneton microkernel :: development

\version

\logo}

• text: this section is used when the text is relatively short and likely to fit in a single file.
The section then contains the whole document’s text.

Instead, a section whose name is based on the current chapter or section can be used if the
document is much more larger and generally split into multiple files.

%

% ------- latex ------------------------------------

%

\section{\LaTeX}

The kaneton documents are written [...]

6.5.3 Style

First of all, comments must be written in lower-case letters. Comments are not intended, in
LATEX files, to describe what the file do but instead play the role of visual separators.

Note that documents are either public or private. Indeed, the LATEX definition \mode, stored in a
temporary file included by kaneton templates, can be used to hide information which must be kept
private to the kaneton developers community like, for instance, implementation details. For more
information, take a look at the template you are interested in or at the other equivalent kaneton
documents.

Recall that the view/figures/ directory contains figures related to the kaneton microkernel doc-
uments. These figures must always be prefered to specific figures. Moreover, writers are asked to
put their figures in this directory if the figure is general enough. Furthermore, figures must be in
the FIG format. Finally, figures must be exported into the PDF format as it is the only format
which is accepted both by pure LATEX documents as well as Beamer documents while rendering
without quality loss.

Remember that every element must be aligned according to its parent. For instance, in the
enumerate environment, the text related to the item must be placed on a new line, aligned by two
characters from the \item element as shown below.

\begin{itemize}[<+->]

\item

\textbf{R2}: return value.

\item

85

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

\textbf{R29}: frame pointer.

\item

\textbf{R30}: global variables area pointer.

\end{itemize}

Templates

The kaneton development environment provides templates in order to making writing documents
easier. The provided templates can be grouped into two categories depending on the type of
rendering: articles are pure LATEX documents while presentations are Beamer -based slides.

The templates book, exam, feedback, internship and paper belong to the article category while
the templates lecture and talk are presentations.

The remaining of this section is details the style according to the document category.

Article

A long comment separator, composed of three lines, must be used before every new subsections,
while a single line separator must be used for subsubsections and other less important components.

%

% naming

%

\subsection{Naming}

Names in kaneton must comply to the following rules.

% general

\subsubsection{General}

Nevertheless, this rule also depends on the document organisation.

Presentation

Unlike articles, presentations are based on the Beamer package. These documents are therefore
composed of slides — frames in the Beamer terminology.

Each frame must be preceded by a commented number indicating the slide’s number into the
section of subsection.

%

% introduction

%

\section{Introduction}

% 1)

\begin{frame}

\frametitle{Description}

\begin{itemize}[<+->]

\item

About \textbf{thirty} hours course.

\item

Concluded by an exam.

\end{itemize}

86

The kaneton microkernel :: development 6.5. LATEX

\end{frame}

% 2)

\begin{frame}

\frametitle{Contents}

\begin{itemize}[<+->]

\item

External architecture.

\item

Pipeline.

\item

Compiler optimisations.

\item

Memory.

\end{itemize}

\end{frame}

opk Package

Since every template is likely to need providing writers the same set of functionalities, a LATEX
package has been written. The opk package includes a set of commands useful for building
function definitions, referencing LATEX labels etc. This package is located in view/package/opk/ and
is composed of the functions below.

First, needless to define the \author directive as the opk package does it automatically, unless
the writer knows what he is doing. Additionally, the package redefines the verbatim environment.

\term(text)

This function is used for introducing new terms.

\name(text)

This function is used for referering to already introduced names.

\code(text)

This function is used for words that represent function names or anything
related to source code.

\reference(section/figure/etc.)

This command is used for referencing figures, sections etc..

Note that this command should encapsulate the whole text such as:
\reference{Figure \ref{figure:Experiments}}.

\location(location)

This command is used for describing locations: path, URL etc.

\function(return type, function name, arguments list, description text)

87

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

This special command is used for describing function definitions.

\type(argument)

This function is for describing arguments.

This command should only be used in the \function() command.

\command(command line, description text)

This function is equivalent to the \function() one but targets Shell, Python
etc. commands rather than language functions.

\subsubsubsection(section name)

This weird command is just an easier way of sub-dividing the text, once more.

\question(text, answer length)

This command is used in feedback -template document for creating questions.

\latex(command name)

This command “latexify” the given command name by putting a backslash in
front of it.

\note(text)

This command is used for making little notes, tips, hints etc.

\example(text)

This command is used for creating examples.

\ie()

This command genereates i.e..

\eg()

This command genereates e.g..

\etc()

This command genereates etc..

\aka()

This command genereates a.k.a..

88

The kaneton microkernel :: development 6.5. LATEX

Plus, layout-oriented commands are also provided.

\indentation()

This command initialises the indentation for the document.

\logo()

This command displays the kaneton logo.

\version()

This command displays the version type of this document according to the
\mode definition.

In addition, specific LATEX environments are provided.

\details()

The details environment enables writers to include additional information
which will only be viewable to private members i.e. in the private version of
the document.

\correction()

The correction environment plays the same role as the details environment
but is used in exam-template documents for providing exercises’ answer.

89

The kaneton microkernel :: development CHAPTER 6. LANGUAGES

90

Chapter 7
People

This sections lists the people in charge of the different tools.

91

The kaneton microkernel :: development CHAPTER 7. PEOPLE

7.1 Project

Below are listed the different components of the kaneton project and, for each, the person in
charge of it.

• Development Environment: Julien Quintard ;

• Design: Julien Quintard ;

• Core: Julien Quintard & Matthieu Bucchianeri ;

• Architecture IA-32: Matthieu Bucchianeri ;

• Architecture MIPS-64: Enguerrand Raymond ;

7.2 Tools

As explained in the documents, newcomers must first register to be able to use a number of
tools. In order to finalize registrations and to perform them, new contributors must get in touch
with the people responsible of these tools.

Below are listed the persons in charge of each tool whose usage is restricted.

• Mailing-List: Julien Quintard ;

• Repository: Julien Quintard ;

• Wiki: Julien Quintard ;

• Project Management Tool: Julien Quintard ;

• Test: Julien Quintard ;

• Build Farm: Julien Quintard ;

• Export: Francois Goudal.

92

Chapter 8
Licenses

In this chapter are described the licenses in relation with the kaneton project.

93

The kaneton microkernel :: development CHAPTER 8. LICENSES

The kaneton project might be considered as an open project since source code is provided.

Nevertheless this is not the case as this project is used as material for operating system courses.

Therefore, people implementing the kaneton microkernel should not make their source code avail-
able. To avoid problems, especially students cheating, kaneton people decided to use a kaneton-
specific license forbidding source code distribution.

The kaneton microkernel project is under the kaneton license.

The kaneton license is based on a more generic license, the pedagogical licence.

The sections below contain these licenses’ descriptions.

8.1 Pedagogical License

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFI-
CATION

1. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this License. The ”Program”,
below, refers to any such program or work, and a ”work based on the Program” means either
the Program or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation in the term
”modification”.) Each licensee is addressed as ”you”.

2. You must not copy or distribute copies of the Program’s source code, object code or exe-
cutable form without explicit authorization from the maintainers.

If you have this authorization, you must conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, provided that you meet all of these conditions :

(a) You must not publish your work without explicit authorization from the maintainers.

(b) You must send to the maintainers any work that in whole or in part contains or is
derived from the Program or any part thereof.

(c) You must cause any work that you send, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole under the terms of this
License.

(d) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

(e) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and telling the user
how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

94

The kaneton microkernel :: development 8.1. PEDAGOGICAL LICENSE

4. Access to the Program’s source is granted if either:

(a) You want to make the Program evolve

(b) You have pedagogical goals

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the
Program is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. We may publish revised and/or new versions of this License from time to time. It may
evolve considering new contributors needs. Contact us if you have any request. Such new
versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission, we sometimes make
exceptions for this.

11. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS

95

The kaneton microkernel :: development CHAPTER 8. LICENSES

IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABIL-
ITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

8.2 kaneton License

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFI-
CATION

1. This licence is nothing more than a link to the pedagogical licence.

2. Any program under the kaneton licence is in fact under the terms and conditions of the
pedagogical licence.

96

	Introduction
	Source Tree
	Community
	Rules
	Tools
	Internal
	Environment
	Configure
	View
	Export
	Transcript
	Cheat
	Test
	Prototypes
	Control Panel

	External
	Mailing-List
	Repository
	Wiki
	Project Management

	Languages
	Make
	Naming
	Environment
	Layout
	Style

	Python
	Naming
	Environment
	Layout
	Style

	Assembly
	Inline Assembly
	Naming
	Layout

	C
	Naming
	Layout
	Style
	Control Structures
	kaneton

	LaTeX
	Naming
	Layout
	Style

	People
	Project
	Tools

	Licenses
	Pedagogical License
	kaneton License

